Skip to main content
Log in

Carbon Nanotube Electron Sources for Electron Microscopes

  • Published:
MRS Online Proceedings Library Aims and scope

Abstract

High-quality electron sources can be made from individual multi-walled carbon nanotubes. A process was developed allowing the control over 1) the length of the fraction of the nanotube protruding from the support tip, 2) the contact length of the nanotube with the support tip, 3) the diameter of the nanotube. In addition, the cap of the nanotube was closed and the nanotube was cleaned thoroughly. The field emission model successfully describes the electron emission process of these electron sources and the work function is 5.1 eV. The emitters show a highly stable emission, as expected on account of the extremely stable structure of the carbon nanotube.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. de Jonge, J. M. Bonard, Phil.Trans.R.Soc.Lond.A 362, 2239–2266 (2004).

    Article  Google Scholar 

  2. W. B. Choi, D. S. Chung, J. H. Kang, H. Y. Kim, Y. W. Jin, I. T. Tan, Y. H. Lee, J. E. Jung, N. S. Lee, G. S. Park and J. M. Kim, Appl.Phys.Lett. 75, 3129–3131 (1999).

    Article  CAS  Google Scholar 

  3. Y. Saito, S. Uemura, Carbon 38, 169–182 (2000).

    Article  CAS  Google Scholar 

  4. H. Sugie, M. Tanemure, V. Filip, K. Iwata, K. Takahashi and F. Okuyama, Appl.Phys.Lett. 78, 2578–2580 (2001).

    Article  CAS  Google Scholar 

  5. G. Z. Yue, Q. Qiu, B. Gao, Y. Cheng, J. Zhang, H. Shimoda, S. Chang, J. P. Lu and O. Zhou, Appl.Phys.Lett 81, 355–357 (2002).

    Article  CAS  Google Scholar 

  6. N. de Jonge, Y. Lamy, K. Schoots and T. H. Oosterkamp, Nature 420, 393–395 (2002).

    Article  Google Scholar 

  7. A. G. Rinzler, J. H. Hafner, P. Nikolaev, L. Lou, S. G. Kim, D. Tomanek, P. Nordlander, D. T. Colbert and R. E. Smalley, Science 269, 1550–1553 (1995).

    Article  CAS  Google Scholar 

  8. N. de Jonge, Y. Lamy and M. Kaiser, Nano Letters 3, 1621–1624 (2003).

    Article  Google Scholar 

  9. R. G. Lacerda, A. S. Teh, M. H. Yang, K. B. K. Teo, N. L. Rupesinghe, S. H. Dalal, K. K. K. Koziol, D. Roy, G. A. J. Amaratunga, W. I. Milne, M. Chowalla, D. G. Hasko, F. Wyczisk and P. Legagneux, Appl.Phys.Lett. 84, 269–271 (2004).

    Article  CAS  Google Scholar 

  10. D. T. Colbert, J. Zhang, S. M. McClure, P. Nikolaev, Z. Chen, J. H. Hafner, D. W. Owens, P. G. Kotula, C. B. Carter, J. H. Weaver, A. G. Rinzler and R. Smalley, Science 266,1218–1222 (1994).

    Article  CAS  Google Scholar 

  11. N. de Jonge, M. Doytcheva, M. Allioux, M. Kaiser, S. A. M. Mentink, K. B. K. Teo, R. G. Lacerda and W. Milne, I, Adv.Mater. 17, 451–455 (2005).

    Article  Google Scholar 

  12. N. de Jonge, J.Appl.Phys. 95, 673–681 (2004).

    Article  Google Scholar 

  13. K. Hata, A. Takakura and Y. Saito, Surf.Sci. 490, 296–300 (2001).

    Article  CAS  Google Scholar 

  14. R. H. Fowler, L. Nordheim, Proc.Roy.Soc.London A 119, 173–181 (1928).

    Article  CAS  Google Scholar 

  15. R. H. Good, E. W. Mueller, Field Emission, ed. S. Fluegge (Springer verlag, 1956) pp. 176–231.

  16. P. W. Hawkes, E. Kasper, Principles of electron optics II: Applied geometrical optics (Academic Press, 1996).

    Google Scholar 

  17. O. Groening, O. M. Kuettel, C. Emmenegger, P. Groening and L. Schlapbach, J.Vac.Sci.Technol.B 18, 665–678 (2000).

    Article  Google Scholar 

  18. N. de Jonge, M. Allioux, M. Doytcheva, M. Kaiser, K. B. K. Teo, R. G. Lacerda and W. Milne, I, Appl.Phys.Lett. 85, 1607–1609 (2004).

    Article  Google Scholar 

  19. R. Gao, Z. Pan and Z. L. Wang, Appl.Phys.Lett. 78, 1757–1759 (2001).

    Article  CAS  Google Scholar 

  20. M. Doytcheva, M. Kaiser, M. A. Verheijen, M. Reyes-Reyes, M. Terrones and N. de Jonge, Chem.Phys.Lett. 396, 126–130 (2004).

    Article  CAS  Google Scholar 

  21. P. Kruit, G. H. Jansen, Space charge and statistical Coulomb effects, ed. J. Orloff (CRC press, 1997) pp. 275–318.

  22. S. T. Purcell, P. Vincent, C. Journet and V. T. Binh, Phys.Rev.Lett. 88, 105502–1–105502–4 (2002).

    Article  CAS  Google Scholar 

  23. J. F. Hainfeld, scanning electron microscopy 1, 591–604 (1977).

    Google Scholar 

  24. V. H. Crespi, N. G. Chopra, M. L. Cohen, A. Zettl and Louie S.G., Phys.Rev.B 54, 5927–5931 (1996).

    Article  CAS  Google Scholar 

  25. R. Saito, G. Dresselhaus and M. S. Dresselhaus, Physical properties of carbon nanotubes (Imperial college press, 1998).

    Book  Google Scholar 

  26. T. Paulmier, M. Balat-Pichelin, D. Le Queau, R. Berjoan and J. F. Robert, Appl.Surf.Sci. 180, 227–245 (2001).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank P.A. Barendse, M. Meuwese and M. van Wely-Dieleman for experimental help, T. H. Oosterkamp, S.A.M. Mentink, G. Schwind, G. van Veen and M. v/d Zande for discussions, and A.G. Rinzler for providing the are discharge nanotube sample.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

de Jonge, N., Oostveen, J.T., van Rooij, T. et al. Carbon Nanotube Electron Sources for Electron Microscopes. MRS Online Proceedings Library 858, 295–305 (2004). https://doi.org/10.1557/PROC-858-HH9.1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/PROC-858-HH9.1

Navigation