Skip to main content
Log in

Silicides for 65 nm CMOS and Beyond

  • Published:
MRS Online Proceedings Library Aims and scope

Abstract

An overview of silicide development for the 65 nm node and beyond is presented. The scaling behavior of Co based and Ni based silicides to sub-100 nm junctions and sub-40 nm gate lengths was investigated. Co and Co-Ni silicides required a high thermal budget to achieve low diode leakage. Even for lower thermal budgets, the sheet resistance of Co and Co-Ni silicides increased at gate lengths below 40 nm. NiSi had low sheet resistance down to 30 nm gate lengths exhibiting a reverse linewidth effect (sheet resistance decreased with decreasing linewidth), achieved lower contact resistivity than CoSi2 and lower diode leakage for similar sheet resistance values. Bridging issues cannot be ignored for NiSi, in particular for thicker Ni films, higher RTP temperatures and in the presence of Ti. Material issues for the application of NiSi were also investigated. Ni2Si was found to grow with diffusion limited kinetics in the 225-300°C range, with an activation energy of 1.5 eV. Results of the kinetic studies were used to design a two-step RTP process that limited the silicide thickness on small features by a low thermal budget first RTP step, reducing the reverse linewidth effect and avoiding excessive silicidation. In the presence of an interfacial oxide, undesired epitaxial NiSi2 pyramidal grains grew directly at temperatures as low as 310°C on p+ Si. Thermal stability of NiSi was also investigated. We found that the initial mechanism of degradation for thin NiSi films was agglomeration, with activation energies of 2.5-3 eV. The surface after agglomeration remained quite flat with alternating NiSi and exposed Si areas, while the interface roughened significantly. Thick films also degraded initially by agglomeration at low temperatures, but by transformation to NiSi2 at higher temperatures. The addition of Pt improved thermal stability of NiSi films against agglomeration. The Ni/Si-Ge reaction was also studied, finding that the addition of Ge reduced the thermal process window and resulted in a slightly higher resistivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. Maex, A. Lauwers, P. Besser, E. Kondoh, M. de Potter and A. Steegen, IEEE Trans. Electron Devices 46 (1999) 1545.

    Article  CAS  Google Scholar 

  2. J.A. Kittl, Q.Z. Hong, C.P. Chao, I.C. Chen, N. Yu, S. O’Brien and M. Hanratty, 1997 Symposium on VLSI Technology Digest of Technical Papers (1997) 103.

  3. J.A. Kittl, W.T. Shiau, Q.Z. Hong and D. Miles, Microelectronic Engineering 50 (2000) 87.

    Article  CAS  Google Scholar 

  4. J.P. Gambino and E.G. Colgan, Materials Chemistry and Physics 52 (1998) 99.

    Article  CAS  Google Scholar 

  5. J.A. Kittl, W.T. Shiau, D. Miles, K.E. Violette, J. Hu and Q.Z. Hong, Solid State Technology June 1999 (1999) 81, and August 1999 (1999) 55.

    Google Scholar 

  6. A. Lauwers, M. de Potter, O. Chamirian, R. Lindsay, C. Demeurisse, C. Vrancken and K. Maex, Microelectronic Engineering 64 (2002) 131.

    Article  CAS  Google Scholar 

  7. O. Chamirian, A. Steegen, H. Bender, A. Lauwers, M. De Potter, F. Marabelli and K. Maex, Microelectronic Engineering 60 (2002) 221.

    Article  CAS  Google Scholar 

  8. C. Detavernier, R.L. Van Meirhaeghe, F. Cardon and K. Maex, Phys. Rev. B 62 (2000) 12045.

    Article  CAS  Google Scholar 

  9. A. Lauwers, P. Besser, T. Gut, A. Satta, M. de Potter, R. Lindsay, N. Roelandts, F. Loosen, S. Jin, H. Bender, M. Stucchi, C. Vrancken, B. Deweerdt and K. Maex, Microelectronic Engineering 50 (2000) 103.

    Article  CAS  Google Scholar 

  10. A. Lauwers, A. Steegen, M. de Potter, R. Lindsay, A. Satta, H. Bender and K. Maex, J. Vac. Sci. Technol. B 19 (2001) 2026.

    Article  Google Scholar 

  11. T. Ohguro, S. Nakamura, M. Koike, T. Morimoto, A. Nishiyama, Y. Ushiku, T. Yoshitomi, M. Ono, M. Saito and H. Iwai, IEEE Trans. Electron Devices 41 (1994) 2305.

    Article  CAS  Google Scholar 

  12. H. Iwai, T. Ohguro and S. Ohmi, Microelectronic Engineering 60 (2002) 157.

    Article  CAS  Google Scholar 

  13. D. Mangelinck, J.Y. Dai, J.S. Pan and S.K. Lahiri, Appl. Phys. Lett. 75 (1999) 1736.

    Article  CAS  Google Scholar 

  14. J.P. Liu, D. Miles, J. Zhao, A. Gurba, Y. Xu, C. Lin, M. Hewson, J. Ruan, L. Tsung, R. Kuan, T. Grider, D. Mercer and C. Montgomery, 2002 IEDM Technical Digest (2002) 371.

  15. R. A. Donatan, K. Maex, A. Vantome, G. Langouche, Y. Morciaux, A. St. Amour and J. C. Sturm, Appl. Phys. Lett. 70 (1997) 1266.

    Article  Google Scholar 

  16. F. M. d’Heurle, C. S. Petersson, J. E. Baglin, S. J. LaPlaca and C. Y. Wong, J. Apply. Phys. 55 (1984) 4208.

    Article  Google Scholar 

  17. V. Teodorescu, L. Nistor, H. Bender, A. Steegen, A. Lauwers, K. Maex and J. Van Landuyt, J. Appl. Phys. 90 (2001) 167.

    Article  CAS  Google Scholar 

  18. M. Lawrence, A. Dass, D. B. Fraser and C. S. Wei, Appl. Phys Lett. 58 (1991) 1308.

    Article  Google Scholar 

  19. R. T. Tung, Appl. Phys. Lett. 68 (1996) 3461.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kittl, J.A., Lauwers, A., Chamirian, O. et al. Silicides for 65 nm CMOS and Beyond. MRS Online Proceedings Library 765, 75 (2002). https://doi.org/10.1557/PROC-765-D7.5

Download citation

  • Published:

  • DOI: https://doi.org/10.1557/PROC-765-D7.5

Navigation