Skip to main content
Log in

Effect of Temperature and Temperature Uniformity on Plasma and Device Stability

  • Articles
  • Published:
MRS Online Proceedings Library Aims and scope

Abstract

We have investigated the changes in the cathode potential in a dc discharge of silane and hydrogen used to deposit the intrinsic layer of p-i-n type solar cells at deposition rates from 1 to 10Å/s with the superstrate temperature at 200°C and 250°C. Under plasma conditions that lead to higher deposition rates (5-10Å/s), fluctuations of the cathode potential which are suggestive of the formation and de-trapping of particulates in/from the plasma, are observed at 200°C but disappear at 250°C. Improvement of the temperature uniformity over the plasma region from 1.7°C/cm to 0.7°C/cm removes the fluctuations of the cathode potential even at 200°C, indicating that the particulates are formed predominantly at the plasma boundary. Consequently, the stability of solar cells with i-layers deposited at ~10Å/s in the center of the plasma region at the same superstrate temperature improved by 26% suggesting that multiple silicon containing molecules diffuse from the edge to the center of the plasma region.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D.E. Carlson, G. Ganguly, G. Lin, M. Gleaton, M. Bennett, and R.R. Arya, Mater. Res. Soc. Symp. Proc. 664 (2001) A11.4

    Article  Google Scholar 

  2. G. Ganguly, and A. Matsuda, Phys. Rev. B49 (1994) 10986

    Article  Google Scholar 

  3. S. Okamoto, T. Takahama, M. Nishikuni, and S. Nakano, US Patent 5114498 (1992)

  4. R. Hayashi, T. Takagi, G. Ganguly, M. Fukawa, M. Kondo and A. Matsuda, Proc. 2nd. World Conference on PVSEC (European Commission, Ispra, Italy, 1998) p-929.

    Google Scholar 

  5. A. Matsuda, S. Yokohama, and K. Tanaka, Appl. Phys. Lett. 53 (1988) 1489

    Article  CAS  Google Scholar 

  6. G. Ganguly, and A. Matsuda, Appl. Phys. Lett. 64 (1994) 3581

    Article  CAS  Google Scholar 

  7. M. Takai, T. Nishimoto, M. Kondo, and A. Matsuda, Appl. Phys. Lett. 77 (2000) 2828

    Article  CAS  Google Scholar 

  8. T. Takagi, R. Hayashi, G. Ganguly, M. Kondo, and A. Matsuda, Thin Solid Films 345

    Article  CAS  Google Scholar 

  9. K. Koga, Y. Matsuoka, K. Tanaka, M. Shiratani, and Y. Watanabe, Appl. Phys. Lett. 77 (2000) 196

    Article  CAS  Google Scholar 

  10. A. Bouchoule, A. Plain, L. Boulefendi, J. Ph. Blondeau, and C. Laure, J. Appl. Phys. 70 (1991) 1991

    Article  CAS  Google Scholar 

  11. G. Ganguly, J. Newton, D.E. Carlson and R.R. Arya, J. Non-Cryst. Solids 299–302 (2002) 53; G. Ganguly, G. Wood, J.N. Newton, M. Bennett, D.E. Carlson and R.R. Arya Mater. Res. Soc. Symp. Proc. 715 (2002) 55.

    Article  CAS  Google Scholar 

  12. A. A. Friedman, L. Boulefendi, T. Hbid, B.V. Potapkin, and A. Bouchoule, J. Appl. Phys, 79 (1996) 1303

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ganguly, G., Bennett, M.S., Carlson, D.E. et al. Effect of Temperature and Temperature Uniformity on Plasma and Device Stability. MRS Online Proceedings Library 762, 104 (2002). https://doi.org/10.1557/PROC-762-A10.4

Download citation

  • Published:

  • DOI: https://doi.org/10.1557/PROC-762-A10.4

Navigation