Skip to main content
Log in

Dielectrically Confined Excitons and Polaritons in Natural Superlattices–Perovskite Lead Iodide Semiconductors

  • Published:
MRS Online Proceedings Library Aims and scope

Abstract

A large class of new layered semiconductors — lead iodide compounds — is of great interest because of possible optoelectronic applications due to pronounced excitonic effects. These compounds may be regarded as naturally grown semiconductor/insulator superlat-tices, with perovskite lead iodide (semiconductor) layers sandwiched by alkylammonium (insulator) layers. Exciton binding energies and oscillator strength in these structures are enhanced due to the so-called “dielectric confinement“ caused by large difference between dielectric constants of adjoining layers. The binding energies, wave functions, & diamagnetic coefficient of excitons in these naturally grown superlattices are calculated with allowance for the image potential and the superlattice structure of the compounds. The localization of excitons in lead iodide layers causes also a strong dependence of a polariton spike in reflection spectra on the polarization of electromagnetic wave. The results obtained are in agreement with the experimental data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S.S. Nagapetyan, Yu.I. Dolzhenko, E.R. Arakelova, V. Koshkin, Yu.T. Struchkov, and V.E. Shklover, Zh. Neorg. Khim., 33, 2806 (1988) [Sov. J. Inorg. Chem., 33, 1614 (1988)].

    CAS  Google Scholar 

  2. T. Ishihara, J. Takahashi, and T. Goto, Solid State Commun., 69, 933 (1989).

    Article  CAS  Google Scholar 

  3. T. Ishihara, J. Takahashi, and T. Goto, Phys. Rev. B, 42, 11099 (1990).

    Article  CAS  Google Scholar 

  4. X. Hong, T. Ishihara, and A.V. Nurmikko, Phys. Rev. B, 45, 6961 (1992).

    Article  CAS  Google Scholar 

  5. J. Calabrese, N.L. Jones, R.L. Harlow, N. Herron, D.L. Thorn, and Y. Wang, J. Am. Chem. Soc. 113, 2328 (1991).

    Article  CAS  Google Scholar 

  6. G. Lucovsky, {etet al.}., Solid State Commun. 18, 811 (1976)

    Article  CAS  Google Scholar 

  7. Y. Nagamune, S. Takeyama, and N. Miura, Rhys. Rev. B40, 8099 (1989).

    Article  Google Scholar 

  8. L.V. Keldysh, Pis’ma Zh. Eksp. Teor. Fiz., vol. 29, pp. 716–719 (1979) [JETP Lett., vol. 29, p. 658 (1979)].

    Google Scholar 

  9. E. Hanamura, N. Nagaosa, M. Kumagai, and T. Takagahara, Material Sci. Eng., vol. B1, pp.255 (1988).

    Article  CAS  Google Scholar 

  10. R.R. Guseinov, Phys. Stat. Solidi (b), 125, 237 (1984).

    Article  CAS  Google Scholar 

  11. G. Bastard, Wave Mechanics Applied to Semiconductor Heterostructures, Les Editions de Physique, (Les Ulis France, 1988).

  12. E.A. Muljarov, S.G. Tikhodeev, and T. Ishihara, Optical Engineering, 1985 (1993).

  13. L.V. Keldysh, Superlattices & Microstructures, 4, 637 (1988).

    Article  Google Scholar 

  14. C. Xu, H. Sakakura, T. Kondo, S. Takeyama, N. Miura, Y. Takahashi, K. Kumata, and R. Ito, Solid State Commun., 79, 249 (1991).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gippius, N., Muljarov, E., Tikhodeev, S. et al. Dielectrically Confined Excitons and Polaritons in Natural Superlattices–Perovskite Lead Iodide Semiconductors. MRS Online Proceedings Library 328, 775–780 (1993). https://doi.org/10.1557/PROC-328-775

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/PROC-328-775

Navigation