Skip to main content
Log in

Interpretation of Aerogel Shrinkage During Drying.

  • Published:
MRS Online Proceedings Library Aims and scope

Abstract

A variety of silica aerogels have been prepared by the hydrolysis of TEOS, and dried using supercritical CO2. The shrinkage which occurs during the drying process is dependent on the gel formulation and the extent of aging of the gels in their pore liquor. Such aging normally results in an increased density, modulus and pore size of wet gels. Upon drying the corresponding aerogels show the opposite behavior for modulus and density, which decrease with the extent of aging. Both drying and aging shrinkage were not observed for base-catalyzed gels, and were very small for HF-catalyzed gels. The use of formamide resulted in reduced drying shrinkage and a slightly larger amount of syneresis. Drying shrinkage is associated with the presence of micropores. Shrinkage during drying has been observed using a high pressure view cell and it was found that most of the shrinkage occurred during depressurization. An explanation consistent with the above is proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. First, Second and Third International Symposium on Aerogels, ed J. Fricke, Wurzburg, Germany (1986), eds Vacher R., Phalippou J., Pelous J., Woignier T., France, (1986), eds Vacher R., Phalippou J., Pelous J., Woignier T., Montpellier, France, (1988), ed J. Fricke, Wurzburg, Germany (1990).

    Google Scholar 

  2. Fricke J., in Aerogels, ed. J. Fricke, Springer Verlag, Berlin, 1, (1986).

    Chapter  Google Scholar 

  3. Hdach H., Woignier T., Phalippou J., Scherer G. W., J. Non Cryst. Solids, 121, 202, (1990).

    Article  CAS  Google Scholar 

  4. Mulder C. A. M., van Lierop J. G., in Aerogels, ed. J. Fricke, Springer Verlag, Berlin, 68 (1986).

    Google Scholar 

  5. Boyde A., Bailey E., Jones S.J., Tamarin A., IITRI/SEM, Vol. 1, 507, (1977).

    Google Scholar 

  6. Rangarajan B., Lira C. T., J. Supercritical Fluids, 4-1, 1,(1991).

    Article  Google Scholar 

  7. Rangarajan B., Lira C. T., J. Non-Cryst. Solids, 136, 111, (1991).

    Article  CAS  Google Scholar 

  8. Woignier T., Phalippou J., Hdach H., Scherer GW, in Better Ceramics Through Chemistry IV, eds. B. J. J. Zelinsky, C. J. Blinker, D. E. Clark, D. R. Ulrich, 1087, (1990).

    Google Scholar 

  9. Scherer G. W., to be published in J. Non-Cryst. Solids, (1992).

  10. Pauthe M., Quinson J. F., Hdach H., Woignier T., Phalippou J., Scherer G., J. Non Cryst. Solids, 130, 1,(1991).

    Article  CAS  Google Scholar 

  11. Scherer G. W., to be published in J. Non-Cryst. Solids, (1992).

  12. Gronauer M., Kadur A., Fricke J., in Aerogels, ed. J. Fricke, Springer Verlag, Berlin, 167, (1986).

    Chapter  Google Scholar 

  13. Woignier T., Phalippou J., Vacher R., in Better Ceramics Through Chemistry III, eds. C. J. Brinker, D. E. Clark, D.R. Ulrich, 697, (1988).

    Google Scholar 

  14. Scherer G. W., J. Non-Cryst. Solids, 109, 183, (1989).

    Article  CAS  Google Scholar 

  15. Scherer G. W., Pardenek S. A., Swiatek R. M., J. Non-Cryst. Solids, 107 [1]. 14, (1988).

    Article  CAS  Google Scholar 

  16. Scherer G. W., in Better Ceramics Through Chemistry III, eds. C. J. Brinker, D. E. Clark, D. R. Ulrich, 179,(1988).

    Google Scholar 

  17. Iier R K, The Chemistry of Silica, Wiley, New York, (1979).

    Google Scholar 

  18. Dumas J., Quinson J. F., Serughetti J., J. Non Cryst. Solids, 125, 244, (1990).

    Article  CAS  Google Scholar 

  19. Hench L. L. in Science of Ceramic Chemical Processing, eds. L. L. Hench, D. R. Ulrich, Wiley, New York, 52, (1986).

    Google Scholar 

  20. Brinker C. J., Scherer G. W., in Sol-Gel Science, Academic Press, San Francisco, (1990).

    Google Scholar 

  21. Scherer G. W., Swiatek R. M., J. Non-Cryst. Solids, 113, 119, (1989).

    Article  CAS  Google Scholar 

  22. 'The Properties of Gases and Liquids', 4th edition, Reid R. C., Prausnitz J. M., and Poling B. E., McGraw Hill, 607, (1987).

    Google Scholar 

  23. Mavrovouniotis G. M., Brenner H., J. Colloid Interface Sci, 124, 269, (1988).

    Article  CAS  Google Scholar 

  24. 'The Dynamical Character of Adsorption', de Boer J. H., Clarendon Press, Oxford, 37, (1953).

    Google Scholar 

  25. Israelchvili J. N., Chem. Scr., 25, 7, (1985).

    Google Scholar 

  26. Snook I. K., van Megan W., J. Chem. Soc, Faraday Trans. 2, 77, 181, (1981).

    Article  CAS  Google Scholar 

  27. van Megan W., Snook I. K., J. Chem. Soc, Faraday Trans. 2, 75, 1095, (1979).

    Article  Google Scholar 

  28. Ash S. G., Everett D. H., Radke C., J. Chem. Soc., Faraday Trans. 2, 69, 1256, (1973).

    Article  CAS  Google Scholar 

  29. Strubinger J. R., Parcher J. F., Anal. Chem, 61, 951, (1989).

    Article  CAS  Google Scholar 

  30. Serda P. J., Feldman R. F., in The Solid Gas Interface vol 2, ed Flood E. A., Marcel Dekker Inc, New York, 729, (1967).

    Google Scholar 

  31. Flood E. A., Heyding R. P., Can. J. Chem., 32, 660, (1954).

    Article  CAS  Google Scholar 

  32. Nakamura K., Hoshino T., Ariyama H., in Proceedings of the 2ndInternational Symposium on Supercritical Fluids, ed M. A. McHugh, John Hopkins University, Baltimore, Maryland, 185, (1991).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rangarajan, B., Lira, C.T. Interpretation of Aerogel Shrinkage During Drying.. MRS Online Proceedings Library 271, 559–566 (1992). https://doi.org/10.1557/PROC-271-559

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/PROC-271-559

Navigation