Skip to main content
Log in

Atomistic Simulation of the Nanoindentation of Diamond and Graphite Surfaces

  • Published:
MRS Online Proceedings Library Aims and scope

Abstract

Molecular dynamics simulations which make use of a many-body analytic potential function have been used to study the nanometer-scale indentation of diamond and graphite. We find that the simulation correctly reproduces experimentally determined trends in load versus penetration data. As a result, trends in mechanical properties, e.g. Young’s modulus, are also reproduced.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. J. Blau and B. R. Lawn, Microindentation Techniques in Materials Science and Engineering, (American Society for Testing and Materials, Philadelphia, 1985).

    Book  Google Scholar 

  2. N. A. Burnham and R. J. Colton, J. Vac. Sci. Tech. A 7, 2906 (1989)

    Article  Google Scholar 

  3. Microscience, Inc., 41 Accord Park Drive, Norwell, MA 02061.

  4. J. B. Pethica and W. C. Oliver, Phys. Scrip. T19, 61 (1987)

    Article  Google Scholar 

  5. N. A. Burnham, R. J. Colton, and H. Pollock, private communication.

  6. N. A. Burnham, D. D. Dominguez, R. L. Mowery, and R. J. Colton, Phys. Rev. Lett. 64, 1931 (1990).

    Article  CAS  Google Scholar 

  7. C. W. Gear, Numerical Initial Value Problems in Ordinary Differential Equations, (Prentice-Hall, Englewood Cliffs, New Jersey, 1971).

    Google Scholar 

  8. D. W. Brenner, Phys. Rev. B 42, 9458 (1990).

    Article  CAS  Google Scholar 

  9. D. W. Brenner, J.A. Harrison, C.T. White, and R.J. Colton, Thin Solid Films, in press.

  10. J. A. Harrison, D.W. Brenner, C.T. White, and R.J. Colton, Thin Solid Films, in press.

  11. R. J. Mowrey, D. W. Brenner, B. I. Dunlap, J. W. Mintmire, and C.T. White, J. Phys. Chem.95, 7138 (1991).

    Article  CAS  Google Scholar 

  12. J. A. Harrison, C. T. White, R.J. Colton, and D. W. Brenner, Surf. Sci. Lett., in press.

  13. J. T. Sprague and N. L. Allinger, J. comp. Chem. 1, 257 (1980).

    Article  CAS  Google Scholar 

  14. H.J.C. Berendsen, J.P.M. Postma, W.F. van Gunsteren, A. DiNola, and J.R. Haak, J. Chem. Phys. 81, 3684 (1984).

    Article  CAS  Google Scholar 

  15. G. D. Kubiak and K. W. Kolasinski, Phys. Rev. B 30, 1381 (1989).

    Article  Google Scholar 

  16. A. V. Hamza, G. D. Kubiak, and R. H. Stulen, Surf. Sci. 237, 35 (1990).

    Article  CAS  Google Scholar 

  17. T. Tsuno, T. Imhi, Y. Nishibayashi, K. Hamada, and N. Fujimore, Jpn. J. Appl. Phys. 30, 1065 (1991).

    Article  Google Scholar 

  18. Y. L. Yang and M. D‘Evelyn, J. Am. Chem. Soc, in press.

  19. I. N. Sneddon, Int. J. Eng. Sci. 3, 41 (1965).

    Article  Google Scholar 

  20. G. E. Henein and J. E. Hilliard, J. Appl. Phys. 54, 728 (1983).

    Article  CAS  Google Scholar 

  21. The elastic constants for the potential used here in units of 1011 dynes/cm2 are: for diamond c11=61.3, c12=40.5, and c44=63.1; for graphite c11=103.7, c12=15.5, c13=-18.4, c33=5.0, and c44=0.060.

  22. D. H. Menzel, Fundamental Formulas of Physics, (Dover Publications, Inc., 1960) p. 586.

    Google Scholar 

Download references

Acknowledgements

This work was supported in part by the Office of Naval Research through contract # N0001491-WX24150. J. A. Harrison acknowledges support from the Office of Naval Technology as an ASEE research associate.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Harrison, J.A., Colton, R.J., White, C.T. et al. Atomistic Simulation of the Nanoindentation of Diamond and Graphite Surfaces. MRS Online Proceedings Library 239, 573–578 (1991). https://doi.org/10.1557/PROC-239-573

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/PROC-239-573

Navigation