Skip to main content
Log in

Elastomeric Polypeptide Biomaterials: Structure and Free Energy Transduction

  • Published:
MRS Online Proceedings Library Aims and scope

Abstract

The primary, secondary, tertiary and quaternary structures are presented and discussed for elastomeric polypeptides capable of undergoing inverse temperature transitions, that is, these polypeptides fold with the extrusion of water on raising the temperature through a transition. The elastomeric polypeptides, which are comprised of repeating peptide sequences, appear to be dominantly entropic elastomers. As these elastomers exhibit preferred secondary, tertiary and quarternary structure, they are not properly characterized as the random chain networks commonly ascribed to entropic elastomers. Instead, a mechanism of damping of internal chain dynamics on extension is described and referred to as the librational entropy mechanism of elasticity. Indeed, there are emerging a set of structural concepts for elastomeric polypeptides.

Of particular interest is that these elastomers are capable of exhibiting free energy transduction, e.g., thermomechanical and chemomechanical. A principle is stated for thermomechanical transduction and a postulate is given for chemomechanical transduction which is supported by prediction and experimental verification. The underlying mechanism is considered to be an aqueous(hydration) mediated apolar(hydrophobic)-polar interaction free energy which arises out of a competition between apolar and polar groups for limited waters of hydration. In general, there emerges a simple structural perspective of free energy transduction in elastomeric polypeptide biomaterials that involves thermal, mechanical or chemical means of altering the equilibrium between folded and unfolded states, where the folded states are dynamic helices called β-spirals with dominantly hydrophobic intramolecular interturn contacts and the unfolded states have the hydrophobic groups exposed to water.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Yeh, H., N. Ornstein-Goldstein, Z. Indik, P.Sheppard, N. Anderson, J. Rosenbloom, G. Cicila, K. Yoon and J. Rosenbloom: Collagen and Related Research7, 235 (1987).

    Article  CAS  Google Scholar 

  2. Sandberg, L., J. Leslie, C. Leach, V. Torres, A. Smith and D. Smith: Pathol. Biol.33, 266 (1985).

    CAS  Google Scholar 

  3. Smith, D.W., L. B. Sandberg, B. H. Leslie, T. E. Wolt, S. T. Minton, B. Myers and R. B. Rucker: Biochem. Biophys. Res. Commun.103, 880–885 (1981).

  4. Indik, Z., H. Yeh, N. Ornstein-Goldstein, P. Sheppard, N. Anderson, J. Rosenbloom, L. Peltonen, and J. Rosenbloom: Proc. Natl. Acad. Sci. USA84, 5680 (1987).

    Article  CAS  Google Scholar 

  5. Urry, D. W. and K. U. Prasad, in Biocompatibility of Tissue Analogues, edited by D.F. Williams, (CRC Press, Inc., Boca Raton, Florida , 1985), pp. 89–116.

    Google Scholar 

  6. Urry, D. W., R. D. Harris, M. M. Long, and K. U. Prasad: Int. J. Pept. Protein Res.28, 649–660 (1986).

  7. Urry, D. W.: J. Protein Chem.7, 1–34 (1988).

  8. Urry, D. W., J. Jaggard, R. D. Harris, D. K. Chang.and K. U. Prasad, in Progress in Biomedical Polymers, edited by Charles G. Gebelein, (Plenum Press). In press.

  9. Urry, D. W., W. D. Cunningham, and T. Ohnishi: Biochemistry13, 609–916 (1974).

  10. Urry, D. W. and T. Ohnishi: Biopolymers13, 1223–1242 (1974).

  11. Urry, D. W. and T. Ohnishi, in Peptides, Polypeptides and Proteins , edited by F. A. Bovey, M. Goodman and N. Lotan, (John Wiley and Sons, Inc., New York, 1974), pp. 230–247.

  12. Cook, W. J., H. M. Einspahr, T. L. Trapane, D. W. Urry and C. E. Bugg: J. Am. Chem. Soc.102, 5502–5505 (1980).

  13. Chang, D. K., K. U. Prasad and D. W. Urry: In preparation.

  14. Tamburro, A. M., V. Guantieri: Int. J. Biol. Macromol.8, 62–63 (1986).

  15. Urry, D. W. and M. M. Long: CRC Crit. Rev., Biochem.4, 1–45 (1976).

    CAS  Google Scholar 

  16. Thomas, Jr., G.J., B. Prescott and D. W. Urry: Biopolymers26, 921–934 (1987).

  17. Urry, D. W., T. L. Trapane, H. Sugano, and K. U. Prasad: J. Am. Chem. Soc.103, 2080–2089 (1981).

  18. Chang, D. K., C. M. Venkatachalam, K. U. Prasad and D. W. Urry: J. of Biomolecular Structure & Dynamics6, 851–858 (1989).

  19. Wasserman, Z. and R. Salemme: Private communication.

  20. Urry, D. W., in Methods in Enzvmology, edited by L W. Cunningham and D. W. Frederiksen, (Academic Press, Inc., New York, New York, 1982), 82, pp. 673–716.

  21. Urry, D. W., V. E. Venkatachalam, Long, M. M. and Prasad, K. U., in Conformation in Biology, edited by R. Srinivasan and R. H. Sarma, (Adenine Press, New York, 1982), pp. 11–27.

  22. Urry, D. W.: J. Protein Chem.3, 403–436 (1984).

  23. Hoeve, C. A. J. and P. J. Flory: Biopolymers13, 677–686 (1974).

  24. Flory, P. J.: Rubber Chem. Technol.41, G41 (1968).

  25. Chang, D. K. and D. W. Urry: J. of Computational Chemistry10, 850–855 (1989).

  26. Khaled, M. A., K. U. Prasad, C. M. Vankatachalam and D. W. Urry: J. Am. Chem. Soc.107, 7139–7145 (1985).

  27. Urry, D. W.: J. Protein Chem.7, 81–114 (1988).

  28. Urry, D. W., B. Haynes, H. Zhang, R. D. Harris and K. U. Prasad: Proc. Natl. Acad. Sci. USA85, 3407–3411 (1988).

  29. Urry, D. W.: Intl. J. Quantum Chem.: Quantum Biol. Symp.15, 235–245 (1988).

  30. Kuhn, W., B. Hargltay, A. Katchalsky and H. Eisenberg: Nature165, 514–516 (1950).

  31. Katchalsky, A., S. Lifson, I. Michaeli and M. Zwick, in “Size & Shape of Contractile Polymers: Conversion of Chemical into Mechanical Energy,” edited by A. Waserman, (Pergamon, New York, 1960), pp. 1–40.

  32. Kuhn, W., A. Ramel and D. H. Walters, in “Size & Shape of Contractile Polymers: Conversion of Chemical Into Mechanical Energy,” edited by A. Wasserman, (Pergamon, New York, 1960), pp. 41–77.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Urry, D.W. Elastomeric Polypeptide Biomaterials: Structure and Free Energy Transduction. MRS Online Proceedings Library 174, 243–250 (1989). https://doi.org/10.1557/PROC-174-243

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/PROC-174-243

Navigation