Skip to main content
Log in

Assessing plant uptake and transport mechanisms of engineered nanomaterials from soil

  • System Integration of Functionalized Natural Materials
  • Published:
MRS Bulletin Aims and scope Submit manuscript

Abstract

Agricultural soils are among the depositories of engineered nanomaterials (ENMs). Soil exposure to ENMs occurs through the intentional use of nano-agrochemicals, as well as through incidental contamination from industrial-waste release, irrigation with wastewater or gray water, amendment with ENMs-loaded sludge (soil conditioning to stimulate plant growth), or atmospheric fallouts. Concerns about ENM interactions with plants raise two questions. (1) Are ENMs taken up from soil by plants? (2) If they are taken up, do they remain in the nanoform within plant tissues? Experiments with crop plants have demonstrated that some ENMs such as TiO2 are taken up by roots and translocated to aboveground tissues, including fruits, without biotransformation. CeO2 ENM is also taken up by the roots; however, although most of it remains as ENM, it releases cerium ions that are incorporated into organic compounds. CeO2 ENM has been shown to be translocated from roots to seeds in soybean grown in soil amended with such ENM. On the other hand, ZnO ENM is transformed at the soil/root interface, leading to tissue Zn enrichment. Overall, most ENMs are taken up by plants with either low or no transformation, and accumulate in tissues.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. P. Wang, E. Lombi, F.J. Zhao, P.M. Kopittke, Trends Plant Sci. 21, 699 (2016).

    Google Scholar 

  2. A.A. Keller, S. McFerran, A. Lazareva, S. Suh, J. Nanopart. Res. 15, 1 (2013).

    Google Scholar 

  3. M. Rizwan, S. Ali, M.F. Qayyum, Y.S. Ok, M. Adrees, M. Ibrahim, M. Zia-ur-Rehman, M. Farid, F. Abbas, J. Hazard. Mater. 322 (2017).

  4. M.L. López-Moreno, G. de la Rosa, J.A. Hernández-Viezcas, H. Castillo-Michel, C.E. Botez, J.R. Peralta-Videa, J.L. Gardea-Torresdey, Environ. Sci. Technol. 44, 19 (2010).

    Google Scholar 

  5. N. Zuverza-Mena, D. Martinez-Fernandez, W. Du, J.A. Hernandez-Viezcas, N. Bonilla-Bird, M. Lopez-Moreno, M. Komarek, J.R. Peralta-Videa, J.L. Gardea-Torresdey, Plant Physiol. Biochem. 110, 236 (2017).

    Google Scholar 

  6. J.B. Jones, Plant Nutrition and Soil Fertility Manual, 2nd ed. (CRC Press, Boca Raton, FL, 2012).

    Google Scholar 

  7. L. Taiz, E. Zeiger, Plant Physiology, 3rd ed. (Sinauer Associates, Sunderland, MA, 2006).

    Google Scholar 

  8. W. Du, W. Tan, J.R. Peralta-Videa, J.L. Gardea-Torresdey, R. Ji, Y. Yin, H. Guo, Plant Physiol. Biochem. 110, 210 (2017).

    Google Scholar 

  9. A.D. Servin, M.I. Morales, H. Castillo-Michel, J.A. Hernandez-Viezcas, B. Munoz, L. Zhao, J.E. Nunez, J.R. Peralta-Videa, J.L. Gardea-Torresdey, Environ. Sci. Technol. 47, 11592 (2013).

    Google Scholar 

  10. R. Raliya, R. Nair, S. Chavalmane, W.-N. Wang, P. Biswas, Metallomics 7, 1584 (2015).

    Google Scholar 

  11. A.C. Barrios, C.M. Rico, J. Trujillo-Reyes, I.A. Medina-Velo, J.R. Peralta-Videa, J.L. Gardea-Torresdey, Sci Total Environ. 563–564 (2016).

  12. L. Zhao, J.R. Peralta-Videa, A. Varela-Ramirez, H. Castillo-Michel, C. Li, J. Zhang, R.J. Aguilera, A.A. Keller, J.L. Gardea-Torresdey, J. Hazard. Mater. 225–226, 131 (2012).

    Google Scholar 

  13. S. Majumdar, J.R. Peralta-Videa, S. Bandyopadhyay, H. Castillo-Michel, J.A. Hernandez-Viezcas, S. Sahi, J.L. Gardea-Torresdey, J. Hazard. Mater. 278, 279 (2014).

    Google Scholar 

  14. P. Zhang, Y. Ma, Z. Zhang, X. He, J. Zhang, Z. Guo, R. Tai, Y. Zhao, Z. Chai, ACS Nano 6, 9943 (2012).

    Google Scholar 

  15. J.A. Hernandez-Viezcas, H. Castillo-Michel, J.C. Andrews, M. Cotte, C. Rico, J.R. Peralta-Videa, Y. Ge, J.H. Priester, P.A. Holden, J.L. Gardea-Torresdey, ACS Nano 7, 1415 (2013).

    Google Scholar 

  16. J.A. Hernandez-Viezcas, H. Castillo-Michel, A.D. Servin, J.R. Peralta-Videa, J.L. Gardea-Torresdey, Chem. Eng. J. 170, 346 (2011).

    Google Scholar 

  17. P. Wang, N.W. Menzies, E. Lombi, B.A. McKenna, B. Johannessen, C.J. Glover, P. Kappen, P.M. Kopittke, Environ. Sci. Technol. 47, 13822 (2013).

    Google Scholar 

  18. J.H. Priester, Y. Ge, R.E. Mielke, A.M. Horst, S.C. Moritz, K. Espinosa, J. Gelb, S.L. Walker, R.M. Nisbet, Y.-J. An, J.P. Schimel, R.G. Palmer, J.A. Hernandez-Viezcas, L. Zhao, J.L. Gardea-Torresdey, P.A. Holden, Proc. Natl. Acad. Sci. U.S.A. 109, E2451 (2012).

    Google Scholar 

Download references

Acknowledgements

W e would like to acknowledge the NSF/EPA Agreement No. DBI-1266377, the NIH 2G12MD007592, USDA Grant No. 2016–67021–24985, and the NSF CHE-0840525 and DBI-1429708 Grants. Partial funding was provided by the NSF ERC on Nanotechnology Enabled Water Treatment (EEC-1449500). I.A. Medina-Velo acknowledges the Consejo Nacional de Ciencia y Tecnología, Mexico.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Illya A. Medina-Velo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Medina-Velo, I.A., Peralta-Videa, J.R. & Gardea-Torresdey, J.L. Assessing plant uptake and transport mechanisms of engineered nanomaterials from soil. MRS Bulletin 42, 379–384 (2017). https://doi.org/10.1557/mrs.2017.87

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrs.2017.87

Navigation