Skip to main content
Log in

Oriented single-crystalline TiO2 nanowires on titanium foil for lithium ion batteries

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

A simple and environmentally benign three-step hydrothermal method was developed for growing oriented single-crystalline TiO2-B and/or anatase TiO2 nanowire arrays on titanium foil over large areas. These nanowire arrays are suitable for use as the anode in lithium ion batteries; they exhibit specific capacities ranging from 200-250 mAh/g at charge-discharge rates of 0.3 C where 1 C is based on the theoretical capacity of 168 mAh/g. Batteries retain this capacity over as many as 200 charge-discharge cycles. Even at high charge-discharge rates of 0.9 C and 1.8 C, the specific capacities were 150 mAh/g and 120 mAh/g, respectively. These promising properties are attributed to both the nanometer size of the nanowires and their oriented alignment. The comparable electrochemical performance to existing technology, improved safety, and the ability to roll titanium foils into compact three-dimensional structures without additional substrates, binders, or additives suggest that these TiO2 nanowires on titanium foil are promising anode materials for large-scale energy storage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G.L. Che, B.B. Lakshmi, E.R. Fisher, C.R. Martin: Carbon nanotubule membranes for electrochemical energy storage and production. Nature393346 (1998)

    Article  CAS  Google Scholar 

  2. G.L. Che, K.B. Jirage, E.R. Fisher, C.R. Martin: Chemical-vapor deposition based template synthesis of microtubular TiS2 battery electrodes. J. Electrochem. Soc.1444296 (1997)

    Article  CAS  Google Scholar 

  3. M. Nishizawa, K. Mukai, S. Kuwabata, C.R. Martin, H. Yoneyama: Template synthesis of polypyrrole-coated spinel LiMn2O4 nanotubules and their properties as cathode active materials for lithium batteries. J. Electrochem. Soc.1441923 (1997)

    Article  CAS  Google Scholar 

  4. C.R. Sides, C.R. Martin: Nanostructured electrodes and the low-temperature performance of Li-ion batteries. Adv. Mater.17125 (2005)

    Article  CAS  Google Scholar 

  5. K.T. Nam, D.W. Kim, P.J. Yoo, C.Y. Chiang, N. Meethong, P.T. Hammond, Y.M. Chang, A.M. Belcher: Virus-enabled synthesis and assembly of nanowires for lithium ion battery electrodes. Science312885 (2006)

    Article  CAS  Google Scholar 

  6. R. Armstrong, G. Armstrong, J. Canales, P.G. Bruce: TiO2-B nanowires. Angew. Chem. Int. Ed.432286 (2004)

    Article  CAS  Google Scholar 

  7. R. Armstrong, G. Armstrong, J. Canales, R. García, P.G. Bruce: Lithium-ion intercalation into TiO2-B nanowires. Adv. Mater.17862 (2005)

    Article  CAS  Google Scholar 

  8. P.G. Bruce, B. Scrosati, J-M. Tarascon: Nanomaterials for rechargeable lithium batteries. Angew. Chem. Int. Ed.472930 (2008)

    Article  CAS  Google Scholar 

  9. L. Kavan, M. Kalbáč, M. Zukalová, I. Exnar, V. Lorenzen, R. Nesper, M. Graetzel: Lithium storage in nanostructured TiO2 made by hydrothermal growth. Chem. Mater.16477 (2004)

    Article  CAS  Google Scholar 

  10. M. Zukalová, M. Kalbáč, L. Kavan, I. Exnar, M. Graetzel: Pseudocapacitive lithium storage in TiO2(B). Chem. Mater.171248 (2005)

    Article  CAS  Google Scholar 

  11. Y. Wang, J.Y. Lee, H.C. Zeng: Polycrystalline SnO2 nanotubes prepared via infiltration casting of nanocrystallites and their electrochemical application. Chem. Mater.173899 (2005)

    Article  CAS  Google Scholar 

  12. Y. Wang, H.C. Zeng, J.Y. Lee: Highly reversible lithium storage in porous SnO2 nanotubes with coaxially grown carbon nanotube overlayers. Adv. Mater.18645 (2006)

    Article  CAS  Google Scholar 

  13. F. Cheng, Z. Tao, J. Liang, J. Chen: Template-directed materials for rechargeable lithium-ion batteries. Chem. Mater.20667 (2008)

    Article  CAS  Google Scholar 

  14. M-S. Park, G-X. Wang, Y-M. Kang, D. Wexler, S-X. Dou, H-K. Liu: Preparation and electrochemical properties of SnO2nanowires for application in lithium-ion batteries. Angew. Chem. Int. Ed.46750 (2007)

    Article  CAS  Google Scholar 

  15. M-S. Park, Y-M. Kang, G-X. Wang, S-X. Dou, H-K. Liu: Preparation and electrochemical properties of SnO2 nanowires for application in lithium-ion batteries. Adv. Funct. Mater.18455 (2008)

    Article  CAS  Google Scholar 

  16. P. Meduri, C. Pendyala, V. Kumar, G.U. Sumanasekera, M.K. Sunkara: Hybrid tin oxide nanowires as stable and high capacity anodes for Li-ion batteries. Nano Lett.9612 (2009)

    Article  CAS  Google Scholar 

  17. D-W. Kim, I-S. Hwang, S.J. Kwon, H-Y. Kang, K-S. Park, Y-J. Choi, K-J. Choi, J-G. Park: Highly conductive coaxial SnO2-In2O3 heterostructured nanowires for Li ion battery electrodes. Nano Lett.73041 (2007)

    Article  CAS  Google Scholar 

  18. X.W. Lou, D. Deng, J.Y. Lee, L.A. Archer: Self supported formation of needlelike Co3O4 nanotubes and their application as lithium-ion battery electrodes. Adv. Mater.20258 (2008)

    Article  CAS  Google Scholar 

  19. Y.G. Li, B. Tan, Y.Y. Wu: Mesoporous Co3O4 nanowire arrays for lithium ion batteries with high capacity and rate capability. Nano Lett.8265 (2008)

    Article  CAS  Google Scholar 

  20. C.K. Chan, X.F. Zhang, Y. Cui: High capacity Li ion battery anodes using Ge nanowires. Nano Lett.8307 (2008)

    Article  CAS  Google Scholar 

  21. C.K. Chan, H.L. Peng, G. Liu, K. Mcilwrath, X.F. Zhang, R.A. Huggins, Y. Cui: High-performance lithium battery anodes using silicon nanowires. Nat. Nanotechnol.331 (2008)

    Article  CAS  Google Scholar 

  22. L-F. Cui, R. Ruffo, C.K. Chan, H.L. Peng, Y. Cui: Crystalline-amorphous core-shell silicon nanowires for high capacity and high current battery electrodes. Nano Lett.9491 (2009)

    Article  CAS  Google Scholar 

  23. D.K. Kim, P. Muralidharan, H-W. Lee, R. Ruffo, Y. Yang, C.K. Chan, H.L. Peng, R.A. Huggins, Y. Cui: Spinel LiMn2O4 nanorods as lithium ion battery cathodes. Nano Lett.83948 (2008)

    Article  CAS  Google Scholar 

  24. L.M. Reddy, M.M. Shaijumon, S.R. Gowda, P.M. Ajayan: Coaxial MnO2/carbon nanotube array electrodes for high-performance lithium batteries. Nano Lett.91002 (2009)

    Article  CAS  Google Scholar 

  25. E. Hosono, T. Kudo, I. Honma, H. Matsuda, H.S. Zhou: Synthesis of single crystalline spinel LiMn2O4 nanowires for lithium in battery with high power density. Nano Lett.91045 (2009)

    Article  CAS  Google Scholar 

  26. Y-S. Hu, X. Liu, J-O. Müller, R. Schlögl, J. Maier, D.S. Su: Synthesis and electrode performance of nanostructured V2O5 by using carbon tube-in-tube as a nanoreactor and an efficient mixed-conducting network. Angew. Chem. Int. Ed.48210 (2009)

    Article  CAS  Google Scholar 

  27. Y-S. Hu, L. Kienle, Y-G. Guo, J. Maier: High lithium electroactivity of nanometer-sized rutile TiO2. Adv. Mater.181421 (2006)

    Article  CAS  Google Scholar 

  28. H.S. Zhou, D.L. Li, M. Hibino, I. Honma: A self-ordered, crystalline-glass, mesoporous nanocomposite for use as a lithium-based storage device with both high power and high energy densities. Angew. Chem. Int. Ed.44797 (2005)

    Article  CAS  Google Scholar 

  29. C.H. Jiang, M.D. Wei, Z.M. Qi, T. Kudo, I. Honma, H.S. Zhou: Particle size dependence of the lithium storage capability and high rate performance of nanocrystalline anatase TiO2 electrode. J. Power Sources166239 (2007)

    Article  CAS  Google Scholar 

  30. Y. Lan, X.P. Gao, H.Y. Zhu, Z.F. Zheng, T.Y. Yan, F. Wu, S.P. Ringer, D.Y. Song: Titanate nanotubes and nanorods prepared from rutile powder. Adv. Funct. Mater.151310 (2005)

    Article  CAS  Google Scholar 

  31. J. Li, S.B. Tang, L. Lu, H.C. Zeng: Preparation of nanocomposites of metals, metal oxides, and carbon nanotubes via self-assembly. J. Am. Chem. Soc.1299401 (2007)

    Article  CAS  Google Scholar 

  32. K.X. Wang, M.D. Wei, M.A. Morris, H.S. Zhou, J.D. Holmes: Mesoporous titania nanotubes: Their preparation and application as electrode materials for rechargeable lithium batteries. Adv. Mater.193016 (2007)

    Article  CAS  Google Scholar 

  33. X.W. Lou, L.A. Archer: A general route to nonspherical anatase TiO2 hollow colloids and magnetic multifunctional particles. Adv. Mater.201853 (2008)

    Article  CAS  Google Scholar 

  34. M. Wagemaker, W.J.H. Borghols, F.M. Mulder: Large impact of particle size on insertion reactions. A case for anatase LixTiO2. J. Am. Chem. Soc.1294323 (2007)

    Article  CAS  Google Scholar 

  35. W.J.H. Borghols, M. Wagemaker, U. Lafont, E.M. Kelder, F.M. Mulder: Impact of nanosizing on lithiated rutile TiO2. Chem. Mater.202949 (2008)

    Article  CAS  Google Scholar 

  36. G.F. Ortiz, I. Hanzu, T. Djenizian, P. Lavela, J.L. Tirado, P. Knauth: Alternative Li-ion battery electrode based on self-organized titania nanotubes. Chem. Mater.2163 (2009)

    Article  CAS  Google Scholar 

  37. B. Liu, J.E. Boercker, E.S. Aydil: Oriented single crystalline titanium dioxide nanowires. Nanotechnology19505604 (2008)

    Article  CAS  Google Scholar 

  38. J.E. Boercker, E. Enache Pommer, E.S. Aydil: Growth mechanism of titanium dioxide nanowires for dye sensitized solar cells. Nanotechnology19095604 (2008)

    Article  CAS  Google Scholar 

  39. L. Kavan, M. Grätzel, J. Rathouský, A. Zukal: Nanocrystalline TiO2 (anatase) electrodes: Surface morphology, adsorption, and electrochemical properties. J. Electrochem. Soc.143394 (1996)

    Article  CAS  Google Scholar 

  40. L. Kavan, J. Rathouský, M. Grätzel, V. Shklover, A. Zukal: Surfactant-templated TiO2 (anatase): Characteristic features of lithium insertion electrochemistry in organized nanostructures. J. Phys. Chem. B10412012 (2000)

    Article  CAS  Google Scholar 

  41. M. Wagemaker, R. van de Krol, A.P.M. Kentgens, A.A. van Well, F.M. Mulder: Two phase morphology limits lithium diffusion in TiO2 (anatase): A Li-7 MAS NMR study. J. Am. Chem. Soc.123111454 (2001)

    Article  CAS  Google Scholar 

  42. G. Armstrong, A.R. Armstrong, J. Canales, P.G. Bruce: TiO2(B) nanotubes as negative electrodes for rechargeable lithium batteries. Electrochem. Solid-State Lett.9A139 (2006)

    Article  CAS  Google Scholar 

  43. Q.J. Li, J.W. Zhang, B.B. Liu, M. Li, R. Liu, X.L. Li, H.L. Ma, S.D. Yu, L. Wang, Y.G. Zou, Z.P. Li, B. Zou, T. Cui, G.T. Zou: Synthesis of high-density nanocavities inside TiO2-B nanoribbons and their enhanced electrochemical lithium storage properties. Inorg. Chem.479870 (2008)

    Article  CAS  Google Scholar 

  44. T. Ohzuku, T. Kodama, T. Hirai: Electrochemistry of anatase titanium-dioxie in lithum noaqueous cells. J. Power Sources14153 (1985)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eray S. Aydil.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, B., Deng, D., Lee, J.Y. et al. Oriented single-crystalline TiO2 nanowires on titanium foil for lithium ion batteries. Journal of Materials Research 25, 1588–1594 (2010). https://doi.org/10.1557/JMR.2010.0204

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.2010.0204

Navigation