Skip to main content
Log in

Tuning cooperative vesicle templating and liquid crystal templating simply by varying silica source

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

The cooperative self-assembly of organic–inorganic siliceous composite structures has been studied from the aspect of inorganic precursors. We reveal that the vesicular or mesostructured materials can be obtained selectively by just changing the silica sources in one templating system. For poly(ethylene oxide)-type block copolymers with either poly(propylene oxide) or poly(butylene oxide) as the hydrophobic moieties, when the other synthesis parameters are exactly the same, the use of tetramethyl orthosilicate (TMOS) as a silica source gives rise to highly ordered mesostructures, while the use of tetraethyl orthosilicate (TEOS) leads to vesicles or foams. The attenuated total reflection Fourier transform infrared (ATR-FTIR) technique is used to monitor the silicate species derived from the hydrolysis and condensation of TMOS and TEOS as a function of the reaction time. On the basis of the ATR-FTIR results, we propose a “differentiating effect” at relatively high pH (4.7) to interpret the influence of different silica sources on the self-organized composite structures. For comparison, a “leveling effect” at relatively low pH (strong acidic conditions) is revealed to explain that both TMOS and TEOS lead to the same mesostructures. Our contribution provides a feasible and designable method to synthesize from conventional ordered mesostructures to novel vesicular structures, which are significant for their future practical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L.F. Zhang, A. Eisenberg Multiple morphologies of crew-cut aggregates of polystyrene-B-poly(acrylic acid) block-copolymers. Science 268, 1728 (1995)

    CAS  Google Scholar 

  2. M. Antonietti, S. Forster Vesicles and liposomes: A self-assembly principle beyond lipids. Adv. Mater. 15, 1323 (2003)

    CAS  Google Scholar 

  3. K. Kita-Tokarczyk, J. Grumelard, T. Haefele, W. Meier Block copolymer vesicles—Using concepts from polymer chemistry to mimic biomembranes. Polymer (Guildf.) 46, 3540 (2005)

    CAS  Google Scholar 

  4. B.M. Discher, Y.Y. Won, D.S. Ege, J.C.M. Lee, F.S. Bates, D.E. Discher, D.A. Hammer Polymersomes: Tough vesicles made from diblock copolymers. Science 284, 1143 (1999)

    CAS  Google Scholar 

  5. P. Alexandridis, U. Olsson, B. Lindman A record nine different phases (four cubic, two hexagonal, and one lamellar lyotropic liquid crystalline and two micellar solutions) in a ternary isothermal system of an amphiphilic block copolymer and selective solvents (water and oil). Langmuir 14, 2627 (1998)

    CAS  Google Scholar 

  6. F.S. Bates, G.H. Fredrickson Block copolymer thermodynamics: Theory and experiment. Annu. Rev. Phys. Chem. 41, 525 (1990)

    CAS  Google Scholar 

  7. C.T. Kresge, M.E. Leonowicz, W.J. Roth, J.C. Vartuli, J.S. Beck Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism. Nature 359, 710 (1992)

    CAS  Google Scholar 

  8. G.S. Attard, J.C. Glyde, C.G. Goltner Liquid-crystalline phases as templates for the synthesis of mesoporous silica. Nature 378, 366 (1995)

    CAS  Google Scholar 

  9. A. Monnier, F. Schuth, Q. Huo, D. Kumar, D. Margolese, R.S. Maxwell, G.D. Stucky, M. Krishnamurty, P. Petroff, A. Firouzi, M. Janicke, B.F. Chmelka Cooperative formation of inorganic–organic interfaces in the synthesis of silicate mesostructures. Science 261, 1299 (1993)

    CAS  Google Scholar 

  10. Q.S. Huo, D.I. Margolese, U. Ciesla, D.G. Demuth, P.Y. Feng, T.E. Gier, P. Sieger, A. Firouzi, B.F. Chmelka, F. Schuth, G.D. Stucky Organization of organic-molecules with inorganic molecular species into nanocomposite biphase arrays. Chem. Mater. 6, 1176 (1994)

    CAS  Google Scholar 

  11. D.Y. Zhao, J.L. Feng, Q.S. Huo, N. Melosh, G.H. Fredrickson, B.F. Chmelka, G.D. Stucky Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 angstrom pores. Science 279, 548 (1998)

    Article  CAS  Google Scholar 

  12. C. Sanchez, C. Boissiere, D. Grosso, C. Laberty, L. Nicole Design, synthesis, and properties of inorganic and hybrid thin films having periodically organized nanoporosity. Chem. Mater. 20, 682 (2008)

    Article  CAS  Google Scholar 

  13. F. Hoffmann, M. Cornelius, J. Morell, M. Froba Silica-based mesoporous organic–inorganic hybrid materials. Angew. Chem. Int. Ed. 45, 3216 (2006)

    Article  CAS  Google Scholar 

  14. D.H.W. Hubert, M. Jung, P.M. Frederik, P.H.H. Bomans, J. Meuldijk, A.L. German Vesicle-directed growth of silica. Adv. Mater. 12, 1286 (2000)

    Article  CAS  Google Scholar 

  15. P. Yuan, X.F. Zhou, H.N. Wang, N.A. Liu, Y.F. Hu, G.J. Auchterlonie, J. Drennan, X.D. Yao, G.Q. Lu, J. Zou, C.Z. Yu Electron-tomography determination of the packing structure of macroporous ordered siliceous foams assembled from vesicles. Small 5, 377 (2009)

    Article  CAS  Google Scholar 

  16. H.N. Wang, X.F. Zhou, M.H. Yu, Y.H. Wang, L. Han, J. Zhang, P. Yuan, G. Auchterlonie, J. Zou, C.Z. Yu Supra-assembly of siliceous vesicles. J. Am. Chem. Soc. 128, 15992 (2006)

    Article  CAS  Google Scholar 

  17. H.N. Wang, Y.H. Wang, X.F. Zhou, L. Zhou, J.W. Tang, J. Lei, C.Z. Yu Siliceous unilamellar vesicles and foams by using block-copolymer cooperative vesicle templating. Adv. Funct. Mater. 17, 613 (2007)

    Article  CAS  Google Scholar 

  18. B. Tan, S.M. Vyas, H.J. Lehmer, B.L. Knutson, S.E. Rankin Synthesis of inorganic and organic–inorganic hybrid hollow particles using a cationic surfactant with a partially fluorinated tail. Adv. Funct. Mater. 17, 2500 (2007)

    Article  CAS  Google Scholar 

  19. J. Fan, S.W. Boettcher, C.K. Tsung, Q. Shi, M. Schierhorn, G.D. Stucky Field-directed and confined molecular assembly of mesostructured materials: Basic principles and new opportunities. Chem. Mater. 20, 909 (2008)

    Article  CAS  Google Scholar 

  20. S. Forster, M. Zisenis, E. Wenz, M. Antonietti Micellization of strongly segregated block copolymers. J. Chem. Phys. 104, 9956 (1996)

    Google Scholar 

  21. P. Bhargava, Y.F. Tu, J.X. Zheng, H.M. Xiong, R.P. Quirk, S.Z.D. Cheng Temperature-induced reversible morphological changes of polystyrene-block-poly(ethylene oxide) micelles in solution. J. Am. Chem. Soc. 129, 1113 (2007)

    CAS  Google Scholar 

  22. J.M. Sun, D. Ma, H. Zhang, C.L. Wang, X.H. Bao, D.S. Su, A. Klein-Hoffmann, G. Weinberg, S. Mann Phase evolution in the alkane-P123-water-TEOS quadru-component system: A feasible route to different complex mesostructured materials. J. Mater. Chem. 16, 1507 (2006)

    CAS  Google Scholar 

  23. T.S. Davies, A.M. Ketner, S.R. Raghavan Self-assembly of surfactant vesicles that transform into viscoelastic wormlike micelles upon heating. J. Am. Chem. Soc. 128, 6669 (2006)

    CAS  Google Scholar 

  24. G.W. Zhou, Y.J. Chen, J.H. Yang, S.H. Yang From cylindrical-channel mesoporous silica to vesicle-like silica with well defined multilamella shells and large inter-shell mesopores. J. Mater. Chem. 17, 2839 (2007)

    CAS  Google Scholar 

  25. J. Liu, Q.H. Yang, L. Zhang, D.M. Jiang, X. Shi, J. Yang, H. Zhong, C. Li Thioether-bridged mesoporous organosilicas: Mesophase transformations induced by the bridged organosilane precursor. Adv. Funct. Mater. 17, 569 (2007)

    CAS  Google Scholar 

  26. J. Liu, C.M. Li, Q.H. Yang, J. Yang, C. Li Morphological and structural evolution of mesoporous silicas in a mild buffer solution and lysozyme adsorption. Langmuir 23, 7255 (2007)

    CAS  Google Scholar 

  27. S.C. Warren, F.J. Disalvo, U. Wiesner Nanoparticle-tuned assembly and disassembly of mesostructured silica hybrids. Nat. Mater. 6, 156 (2007)

    CAS  Google Scholar 

  28. C.J. Brinker, Y.F. Lu, A. Sellinger, H.Y. Fan Evaporation-induced self-assembly: Nanostructures made easy. Adv. Mater. 11, 579 (1999)

    CAS  Google Scholar 

  29. S. Pevzner, O. Regev, A. Lind, M. Linden Evidence for vesicle formation during the synthesis of catanionic templated mesoscopically ordered silica as studied by Cryo-TEM. J. Am. Chem. Soc. 125, 652 (2003)

    CAS  Google Scholar 

  30. M.J. Yuan, J.W. Tang, C.Z. Yu, Y.H. Chen, B. Tu, D.Y. Zhao The upper temperature limit in cooperative assembly of ordered mesoporous materials. Chem. Lett. 32, 660 (2003)

    CAS  Google Scholar 

  31. N.L. Allinger, M. Rahman, J.H. Lii A molecular mechanics force-field (Mm3) for alcohols and ethers. J. Am. Chem. Soc. 112, 8293 (1990)

    CAS  Google Scholar 

  32. M.I Tejedor-Tejedor, L. Paredes, M.A. Anderson Evaluation of ATR-FTIR spectroscopy as an “in situ” tool for following the hydrolysis and condensation of alkoxysilanes under rich H2O conditions. Chem. Mater. 10, 3410 (1998)

    CAS  Google Scholar 

  33. B. Tan, S.E. Rankin Study of the effects of progressive changes in alkoxysilane structure on sol-gel reactivity. J. Phys. Chem. B 110, 22353 (2006)

    CAS  Google Scholar 

  34. D.Y. Zhao, J.Y. Sun, Q.Z. Li, G.D. Stucky Morphological control of highly ordered mesoporous silica SBA-15. Chem. Mater. 12, 275 (2000)

    Article  CAS  Google Scholar 

  35. C.Z. Yu, Y.H. Yu, D.Y. Zhao Highly ordered large caged cubic mesoporous silica structures templated by triblock PEO–PBO–PEO copolymer. Chem. Commun. (Camb.) 575 (2000)

    Google Scholar 

  36. J.R. Matos, M. Kruk, L.P. Mercuri, M. Jaroniec, L. Zhao, T. Kamiyama, O. Terasaki, T.J. Pinnavaia, Y. Liu Ordered mesoporous silica with large cage-like pores: Structural identification and pore connectivity design by controlling the synthesis temperature and time. J. Am. Chem. Soc. 125, 821 (2003)

    Article  CAS  Google Scholar 

  37. da L.C.C. Silva, dos L.B.O. Santos, G. Abate, I.C. Cosentino, M.C.A. Fantini, J.C. Masini, J.R. Matos Adsorption of Pb2+, Cu2+ and Cd2+ in FDU-1 silica and FDU-1 silica modified with humic acid. Microporous Mesoporous Mater. 110, 250 (2008)

    Article  CAS  Google Scholar 

  38. T. Azzam, A. Eisenberg Control of vesicular morphologies through hydrophobic block length. Angew. Chem. Int. Ed. 45, 7443 (2006)

    Article  Google Scholar 

  39. J.C.M. Vanhest, D.A.P. Delnoye, M. Baars, M.H.P. Vangenderen, E.W. Meijer Polystyrene-dendrimer amphiphilic block-copolymers with a generation-dependent aggregation. Science 268, 1592 (1995)

    Article  CAS  Google Scholar 

  40. P.L. Soo, A. Eisenberg Preparation of block copolymer vesicles in solution. J. Polym. Sci., Part B: Polym. Phys. 42, 923 (2004)

    CAS  Google Scholar 

  41. C.J. Brinker, G.W. Scherer Sol-Gel Science: The Physics and Chemistry of Sol-Gel Processing (Academic Press, New York 1990)

    Google Scholar 

  42. C.E.A. Kirschhock, S.P.B. Kremer, P.J. Grobet, P.A. Jacobs, J.A. Martens New evidence for precursor species in the formation of MFI zeolite in the tetrapropylammonium hydroxide-tetraethyl orthosilicate-water system. J. Phys. Chem. B 106, 4897 (2002)

    CAS  Google Scholar 

  43. S.A. Pelster, W. Schrader, F. Schuth Monitoring temporal evolution of silicate species during hydrolysis and condensation of silicates using mass spectrometry. J. Am. Chem. Soc. 128, 4310 (2006)

    CAS  Google Scholar 

  44. S. Ruthstein, J. Schmidt, E. Kesselman, Y. Talmon, D. Goldfarb Resolving intermediate solution structures during the formation of mesoporous SBA-15. J. Am. Chem. Soc. 128, 3366 (2006)

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chengzhong Yu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, J., Yu, M., Yuan, P. et al. Tuning cooperative vesicle templating and liquid crystal templating simply by varying silica source. Journal of Materials Research 25, 648–657 (2010). https://doi.org/10.1557/JMR.2010.0085

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.2010.0085

Navigation