Skip to main content
Log in

Dynamic annealing of defects in irradiated zirconia-based ceramics

  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

We have observed efficient damage recovery in large-scale molecular dynamics simulations of 30 keV Zr recoils in pure zirconia and yttria-stabilized zirconia, which is in stark contrast to radiation damage accumulation in zircon. Dynamic annealing is highly effective in zirconia during the first 5 ps of damage evolution, especially in the presence of oxygen structural vacancies. This results in near-complete recovery of damage. Damage recovery on the cation sublattice is assisted by the anion sublattice recovery, which explains the remarkable radiation tolerance of stabilized zirconia. Ceramics engineered to heal themselves in this fashion hold great promise for use in high-radiation environments or for safely encapsulating high-level radioactive waste over geological time scales.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4

Similar content being viewed by others

References

  1. United States Department of Energy The Global Nuclear Energy Partnership, Available at http://www.gnep.energy.gov.

  2. K.E. Sickafus, H. Matzke, T. Hartmann, K. Yasuda, J.A. Valdez, P. Chodak, M. Nastasi, R.A. Verrall: Radiation-damage effects in zirconia. J. Nucl. Mater. 274, 66 1999

    Article  CAS  Google Scholar 

  3. I. Farnan, H. Cho, W.J. Weber: Quantification of actinide α-radiation damage in minerals and ceramics. Nature 445, 190 2007

    Article  CAS  Google Scholar 

  4. W. Smith, I.T. Todorov: A short description of DL_POLY. Mol. Simul. 32, 935 2006

    Article  CAS  Google Scholar 

  5. R. Devanathan, L.R. Corrales, W.J. Weber, A. Chartier, C. Meis: Molecular dynamics simulation of disordered zircon. Phys. Rev. B 69, 064115 2004

    Article  Google Scholar 

  6. P.K. Schelling, S.R. Phillpot, D. Wolf: Mechanism of the cubic-to-tetragonal phase transition in zirconia and yttria-stabilized zirconia by molecular-dynamics simulation. J. Am. Ceram. Soc. 84, 1609 2001

    Article  CAS  Google Scholar 

  7. J.F. Ziegler, J.P. Biersack, U. Littmark: The Stopping and Range of Ions in Matter Pergamon New York 1985

    Book  Google Scholar 

  8. W. Humphrey, A. Dalke, K. Schulten: VMD—Visual Molecular Dynamics. J. Mol. Graph. 14, 33 1996

    Article  CAS  Google Scholar 

  9. R.C. Ewing: Nuclear waste forms for actinides. Proc. Natl. Acad. Sci. U.S.A. 96, 3432 1999

    Article  CAS  Google Scholar 

  10. R. Devanathan, L.R. Corrales, W.J. Weber, A. Chartier, C. Meis: Molecular dynamics simulation of energetic uranium recoil damage in zircon. Mol. Simul. 32, 1069 2006

    Article  CAS  Google Scholar 

  11. R. Devanathan, W.J. Weber, S.C. Singhal, J.D. Gale: Computer simulation of defects and oxygen transport in yttria-stabilized zirconia. Solid State Ionics 177, 1251 2006

    Article  CAS  Google Scholar 

  12. R. Pornprasertsuk, P. Ramanarayanan, C.B. Musgrave, F.B. Prinz: Predicting ionic conductivity of solid oxide fuel cell electrolyte from first principles. J. Appl. Phys. 98, 103513 2005

    Article  Google Scholar 

  13. K. Trachenko, J.M. Pruneda, E. Artacho, M.T. Dove: How the nature of the chemical bond governs resistance to amorphization by radiation damage. Phys. Rev. B 71, 184104 2005

    Article  Google Scholar 

  14. K.E. Sickafus, R.W. Grimes, J.A. Valdez, A. Cleave, M. Tang, M. Ishimaru, S.M. Corish, C.R. Stanek, B.P. Uberuaga: Radiation-induced amorphization resistance and radiation tolerance in structurally related oxides. Nat. Mater. 6, 217 2007

    Article  CAS  Google Scholar 

  15. W.J. Weber, R.C. Ewing: Plutonium immobilization and radiation effects. Science 289, 2051 2000

    Article  CAS  Google Scholar 

  16. R.C. Ewing, W.J. Weber, J. Lian: Nuclear waste disposal—pyrochlore (A2B2O7): Nuclear waste form for the immobilization of plutonium and “minor” actinides. J. Appl. Phys. 95, 5949 2004

    Article  CAS  Google Scholar 

  17. M.J.D. Rushton, C.R. Stanek, A.R. Cleave, B.P. Uberuaga, K.E. Sickafus, R.W. Grimes: Simulation of defects and defect processes in fluorite and fluorite related oxides: Implications for radiation tolerance. Nucl. Instrum. Methods B 255, 151 2007

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by the Division of Materials Sciences and Engineering, Office of Basic Energy Sciences, United States Department of Energy (DOE) under Contract DE-AC05-76RL01830. It was performed using the Molecular Science Computing Facility (MSCF) in the Environmental Molecular Sciences Laboratory (EMSL), a national scientific user facility sponsored by the United States Department of Energy (USDOE), Office of Biological and Environmental Research (OBER), and located at Pacific Northwest National Laboratory (PNNL), it used resources of National Energy Research Scientific Computing Center (NERSC), which is supported by the Office of Science of the U.S. DOE under Contract No. DE-AC03-76SF00098.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ram Devanathan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Devanathan, R., Weber, W.J. Dynamic annealing of defects in irradiated zirconia-based ceramics. Journal of Materials Research 23, 593–597 (2008). https://doi.org/10.1557/JMR.2008.0104

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.2008.0104

Navigation