Skip to main content
Log in

In situ quasi-elastic scattering characterization of particle size effects on the hydration of tricalcium silicate

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

The effects of different particle size distributions on the real-time hydration of tricalcium silicate cement paste were studied in situ by quasi-elastic neutron scattering. The changing state of water in the cement system was followed as a function both of cement hydration time and of temperature for different initial particle size distributions. It was found that the length of the initial, dormant, induction period, together with the kinetics of hydration product nucleation and growth, depends on the hydration temperature but not on the particle size distribution. However, initial particle size does affect the total amount of cement hydrated, with finer particle size producing more hydrated cement. Furthermore, the diffusion-limited rate of hydration at later hydration time is largely determined by the initial tricalcium silicate particle size distribution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H.L. Le Chatelier: In Experimental Researches on the Constitution of Hydraulic Mortars (McGraw Publishing Co., New York, 1905).

    Google Scholar 

  2. J. Skalny and I. Odler: Effect of heat treatment on the pore structure and drying shrinkage behavior of hydrated cement paste. J. Colloid Interface Sci. 40, 199 (1972).

    Article  CAS  Google Scholar 

  3. I. Odler and H. Dorr: Tricalcium silicate formation by solid-state reactions. Am. Ceram. Soc. Bull. 56, 1086 (1977).

    CAS  Google Scholar 

  4. A. Bentur, R.L. Berger, J.H. Kung, N.B. Milestone, and J.F. Young: Structural-properties of calcium silicate pastes 2. Effect of curing temperature. J. Am. Ceram. Soc. 62, 362 (1979).

    Article  CAS  Google Scholar 

  5. H.F.W. Taylor: In Cement Chemistry (Academic Press, London, U.K., 1990), pp. 153–156.

    Google Scholar 

  6. Cement chemistry notation: C = CaO, S = SiO2, H = H2O. http://www.wordiq.com/definition/cementchemistnotation.

  7. R. Kondo and S. Ueda: Kinetics of Hydration of Cements, in Proc. 5th Int. Symposium on the Chemistry of Cement. Vol. II. (Cement Association of Japan Tokyo, Japan, 1969), p. 203.

    Google Scholar 

  8. J.H. Taplin: On the Hydration Kinetics of Hydraulic Cements, in Proc. 5th Int. Symposium on the Chemistry of Cement. Vol. II. (Cement Association of Japan Tokyo, Japan, 1969), p. 337.

    Google Scholar 

  9. J.M. Pommersheim, J.R. Clifton, and G.J. Frohnsdorff: Mathematical- modeling of tricalcium silicate hydration 2. Hydration sub-models and the effect of model parameters. Cem. Concr. Res. 12, 765 (1982).

    Article  CAS  Google Scholar 

  10. J.M. Pommersheim: Effect of particle size distribution on hydration kinetics, in Microstructural Development During Hydration of Cement, edited by L.J. Struble and P.W. Brown (Mater. Res. Soc. Symp. Proc. 85, Pittsburgh, PA, 1987), p. 301.

    Google Scholar 

  11. T. Knudsen: The dispersion model for hydration of portlandcement 1 general concepts. Cem. Concr. Res., 14, 622 (1984).

    Article  CAS  Google Scholar 

  12. T. Knudsen and M. Geiker: Obtaining hydration data by measurement of chemical shrinkage with an archimeter. Cem. Concr. Res. 15, 381 (1985).

    Article  CAS  Google Scholar 

  13. P.W. Brown, J. Pommersheim, and G. Frohnsdorff: A kineticmodel for the hydration of tricalcium silicate. Cem. Concr. Res. 15, 35 (1985).

    Article  CAS  Google Scholar 

  14. D.P. Bentz: Three-dimensional computer simulation of Portland cement hydration and microstructure development. J. Am. Ceram. Soc. 80, 3 (1997).

    Article  CAS  Google Scholar 

  15. D.P. Bentz, E.J. Garboczi, C.J. Haecker, and O.M. Jensen: Effects of cement particle size distribution on performance properties of Portland cement-based materials. Cem. Concr. Res. 29, 1663 (1999).

    Article  CAS  Google Scholar 

  16. A. Princigallo, P. Lura, K. van Breugel, and G. Levita: Early development of properties in a cement paste: A numerical and experimental study. Cem. Concr. Res. 33, 1013 (2003).

    Article  CAS  Google Scholar 

  17. L.M. Parrott, M. Geiker, W.A. Gutteridge, and D. Killoh: Monitoring Portland-cement hydration - comparison of methods. Cem. Concr. Res. 20, 919 (1990).

    Article  CAS  Google Scholar 

  18. G. Papavassiliou, M. Fardis, E. Laganas, A. Leventis, A. Hassanien, F. Milia, A. Papageorgiou, and E. Chaniotakis: Role of the surface morphology in cement gel growth dynamics: A combined nuclear magnetic resonance and atomic force microscopy study. J. Appl. Phys. 82, 449 (1997).

    Article  CAS  Google Scholar 

  19. J. Greener, H. Peemoeller, C. Choi, R. Holly, E.J. Reardon, C.M. Hansson, and M.M. Pintar: Monitoring of hydration of white cement paste with proton NMR spin-spin relaxation. J. Am. Ceram. Soc. 83, 623 (2000).

    Article  CAS  Google Scholar 

  20. A.J. Allen, R.C. Oberthur, D. Pearson, P. Schofield, and C.R. Wilding: Development of the fine porosity and gel structure of hydrating cement systems. Philos. Mag. B 56, 263 (1987).

    Article  CAS  Google Scholar 

  21. J.J. Thomas, H.M. Jennings, and A.J. Allen: The surface area of cement paste as measured by neutron scattering: Evidence for two C-S-H morphologies. Cem. Concr. Res. 28, 897 (1998).

    Article  CAS  Google Scholar 

  22. J.J. Thomas, H.M. Jennings, and A.J. Allen: The surface area of hardened cement paste as measured by various techniques. Concr. Sci. Eng. 1, 45 (1999).

    Google Scholar 

  23. D.R. Vollet and A.F. Craievich: Effects of temperature and of the addition of accelerating and retarding agents on the kinetics of hydration of tricalcium silicate. J. Phys. Chem. B 104, 12143 (2000).

    Article  CAS  Google Scholar 

  24. D.H.C. Harris, C.G. Windsor, and C.D. Lawrence: Free and bound water in cement pastes. Mag. Concr. Res. 26, 65 (1974).

    Article  CAS  Google Scholar 

  25. S.A. FitzGerald, D.A. Neumann, J.J. Rush, D.P. Bentz, and R.A. Livingston: In situ quasi-elastic neutron scattering study of the hydration of tricalcium silicate. Chem. Mater. 10, 397 (1998).

    Article  CAS  Google Scholar 

  26. R. Berliner, M. Popvici, K.W. Herwig, M. Berliner, H.M. Jennings, and J.J. Thomas: Quasielastic neutron scattering study of the effect of water-to-cement ratio on the hydration kinetics of tricalcium silicate. Cem. Concr. Res. 28, 231 (1998).

    Article  CAS  Google Scholar 

  27. E. Fratini, S-H. Chen, P. Baglioni, and M-C. Bellissent-Funel: Dynamic scaling of quasielastic neutron scattering spectra from interfacial water. Phys. Rev. E 64, 020201 (2001).

    Article  CAS  Google Scholar 

  28. E. Fratini, A. Faraone, P. Baglioni, M-C. Bellissent-Funel, and S-H. Chen: Dynamic scaling of QENS spectra of glassy water in aging cement paste. Physica A 304, 1 (2002).

    Article  CAS  Google Scholar 

  29. E. Fratini, S-H. Chen, P. Baglioni, and M-C. Bellissent-Funel: Quasi-elastic neutron scattering study of translational dynamics of hydration water in tricalcium silicate. J. Phys. Chem. B 106, 158 (2002).

    Article  CAS  Google Scholar 

  30. S.A. FitzGerald, D.A. Neumann, J.J. Rush, R.J. Kirkpatrick, X. Cong, and R.A. Livingston: Inelastic neutron scattering study of the hydration of tricalcium silicate. J. Mater. Res. 14, 1160 (1999).

    Article  CAS  Google Scholar 

  31. J. J. Thomas, S.A. FitzGerald, D.A. Neumann, and R.A. Livingston: State of water in hydrating tricalcium silicate and portland cement pastes as measured by quasi-elastic neutron scattering. J. Am. Ceram. Soc. 84, 1811 (2001).

    Google Scholar 

  32. S.A. FitzGerald, J.J. Thomas, D.A. Neumann, and R.A. Livingston: A neutron scattering study of the role of diffusion in the hydration of tricalcium silicate. Cem. Concr. Res. 32, 409 (2002).

    Article  CAS  Google Scholar 

  33. R. Berliner, M. Popovici, K. Herwig, H.M. Jennings, and J. Thomas: High-resolution neutron scattering with commercial thin silicon wafers as focusing monochromators. Physica B 241, 1237 (1997).

    Article  Google Scholar 

  34. R.A. Livingston: Fractal nucleation and growth model for the hydration of tricalcium silicate. Cem. Concr. Res. 30, 1853 (2000).

    Article  CAS  Google Scholar 

  35. J.J. Thomas and H.M. Jennings: Effects of D2O and mixing on the early hydration kinetics of tricalcium silicate. Chem. Mater. 11, 1907 (1999).

    Article  CAS  Google Scholar 

  36. A.J. Allen, I.G. Richardson, and G.N. Kearley: (Institute Laue-Langevin: Grenoble, France, 1988) Unpublished results.

  37. J.J. Thomas, J. Chen, H.M. Jennings, and A.J. Allen: Effects of decalcification on the microstructure and surface area of cement and tricalcium silicate pastes. Cem. Concr. Res. (2004, in press).

    Google Scholar 

  38. A.J. Allen, J.J. Thomas, and H.M. Jennings: Composition and density of amorphous calcium–silicate–hydrate gel in cement from combined neutron and x-ray small-angle scattering. J. Am. Ceram. Soc., (2004) (in press).

    Google Scholar 

  39. L.F. Brown: LANL Report LA-UR-01-1005 (Los Alamos, NM, 2001).

    Google Scholar 

  40. A. Jillavenkatesa, S.J. Dapkunas, and L-S.H. Lum: In Particle Size Characterization, NIST Special Publication 960-1 (National Institute of Standards and Technology: Gaithersburg, MD, 2001), p. 93.

    Google Scholar 

  41. W.K. Brown and K.H. Wohletz: Derivation of the Weibull distribution based on physical principles and its connection to the Rosin-Rammler and lognormal distributions. J. Appl. Phys. 78, 2758 (1995).

    Article  CAS  Google Scholar 

  42. H.C. Van de Hulst: In Light Scattering by Small Particles (John Wiley and Sons, New York, 1962).

    Google Scholar 

  43. J.R.D. Copley and T.J. Udovic: Neutron time-of-flight spectroscopy. J. Res. Natl. Inst. Stand. Technol. 98, 71 (1993).

    Article  CAS  Google Scholar 

  44. J.S. Langer and A.J. Schwartz: Kinetics of nucleation in nearcritical fluids. Phys. Rev. A 21, 948 (1980).

    Article  CAS  Google Scholar 

  45. A.J. Allen, D. Gavillet, and J.R. Weertman: SANS and TEM studies of isothermal M2C carbide precipitation in ultrahigh strength AF1410 steels. Acta Metall. Mater. 41, 1869 (1993).

    Article  CAS  Google Scholar 

  46. A.J. Allen and R.A. Livingston: The relationship between differences in silica fume additives and the fine scale microstructural evolution in cement-based materials, Adv. Cement-Based Mater. 8, 118 (1998).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. J. Allen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Allen, A.J., McLaughlin, J.C., Neumann, D.A. et al. In situ quasi-elastic scattering characterization of particle size effects on the hydration of tricalcium silicate. Journal of Materials Research 19, 3242–3254 (2004). https://doi.org/10.1557/JMR.2004.0415

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.2004.0415

Navigation