Skip to main content
Log in

Mechanical properties and low-temperature aging of tetragonal zirconia polycrystals processed by hot isostatic pressing

  • Articles
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

The influence of grain size and density of yttria-tetragonal zirconia polycrystals (Y-TZPs) ceramics on mechanical properties and on low-temperature aging degradation (LTD) in air and in hot water was investigated. A TZP powder containing 3 mol% Y2O3 was consolidated by slip casting and densified by the sintering/hot isostatic pressing (HIP) method. Only the presintered samples that contained less than 0.15% open porosity reached near full density after HIP. The best conditions to reach full density were found to be attained by presintering and HIP both at 1400 °C. At these conditions, some of the best mechanical properties such as modulus of rupture and Weibull modulus reached 1397 ± 153 MPa and, 10.6, respectively. These values were clearly higher than those obtained from sintered bodies and samples hot isostatically pressed at 1600 °C. Aging degradation of 3Y-TZP materials can be avoided through microstructural design. Fully dense materials with a critical grain size <0.36 μm did not show any evidence of degradation after extreme aging conditions at pressurized autoclaving in hot water at 100, 200, and 260 °C for 8 h. We propose a criterion to predict degradation in air as well as in hot water for the characterized materials based on the microstructure and density control of the samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. Claussen, in Advances in Ceramics 1, Science and Technology of Zirconia II, edited by N. Claussen, M. Rühlee, and A.H. Heuer (American Ceramic Society, Columbus, OH, 1984), p. 325.

    Google Scholar 

  2. A.G. Evans and R.M. Cannon, Acta Metall. 34, 761 (1986).

    Article  CAS  Google Scholar 

  3. F.F. Lange and D.G. Green, in Advances in Ceramics 3, Science and Technology of Zirconia, edited by A.H. Heuer and L.W. Hobbs (American Ceramic Society, Columbus, OH, 1981), p. 217.

  4. K. Kobayashi, H. Kuwajima, and T. Misaki, Solid State Ionics 3/4, 489 (1981).

    Article  Google Scholar 

  5. T. Sato and M. Shimada, J. Am. Ceram. Soc. 68, 356 (1985).

    Article  CAS  Google Scholar 

  6. M. Yoshimura, Am. Ceram. Soc. Bull. 67, 1950–55 (1988).

  7. S. Lawson, J. Eur. Ceram. Soc. 15, 485 (1995).

    Article  CAS  Google Scholar 

  8. K. Tsukuma, Y. Kubota, and T. Tsukidate, in Advances in Ceramics 12, Science and Technology of Zirconia II, edited by N. Claussen, M. Rühle, and A.H. Heuer (American Ceramic Society, Columbus, OH, 1984), p. 382.

  9. T. Masaki, Int. J. High Tech. Ceram. 1, 85 (1986).

    Article  Google Scholar 

  10. L. Gremillard, J. Chevalier, T. Epicier, and G. Fantozzi, J. Am. Ceram. Soc. 85, 401 (2002).

    Article  CAS  Google Scholar 

  11. S. R. Jansen, A. J. A. Winnubst, Y. J. He, H. Verweij, P.G.Th. van der Varst, and G. de With, J. Eur. Ceram. Soc. 18, 557 (1998).

    Article  CAS  Google Scholar 

  12. D.J. Green, R.H.J. Hannink, and M.V. Swain, Transformation Toughening of Ceramics, (CRC Press, Boca Raton, FL, 1989).

  13. C.L. Hogg and M.V. Swain, in Advances in Ceramics 24, Science and Technology of Zirconia III, edited by N. Claussen, M. Rühle, and A.H. Heuer (American Ceramic Society, Columbus, OH, 1988), p. 253.

  14. A.P. Druschitz and J.G. Schroth, J. Am. Ceram. Soc. 72, 1591 (1989).

    Article  CAS  Google Scholar 

  15. J. Chevalier, B. Cales, and J.M. Drouin, J. Am. Ceram. Soc. 82, 2150 (1999).

    Article  CAS  Google Scholar 

  16. H. Balmori, F. Hernández, and D. Jaramillo, in Ceramic Transactions 51, Ceramic Processing Science and Technology, edited by H. Hausner, G.L. Messing, and S-I. Hirano (American Ceramic Society, Westerville, OH, 1995), p. 367.

  17. F.J. Hernández-Cuevas, M.Sc. Thesis, Instituto Politécnico Nacional, Mexico (1994) (in Spanish).

  18. T. Scholz, M. May, M.V. Swain, G.A. Schneider, and N. Claussen, Z. Metallkunde, Zeitschrift für metallkunde 94, 819 (2003).

    Article  CAS  Google Scholar 

  19. K. Niihara, R. Morena, and P.H. Hasselman, J. Mater. Sci. Lett. 1, 13 (1982).

    Article  CAS  Google Scholar 

  20. T. Masaki, T. Tonomura. Y. Kitano, and G. Katagiri, in Sintering ’87, edited by S. Somiya, M. Shimada, R. Watanabe, and M. Yoshimura, (Elsevier, The Netherlands, 1987), p. 1121.

  21. H.G. Scott, J. Mater. Sci. 10, 1527 (1975).

    Article  CAS  Google Scholar 

  22. O. Vasylkiv and Y. Sakka, J. Am. Ceram. Soc. 84, 2489 (2001).

    Article  CAS  Google Scholar 

  23. J.B. Watchman, Mechanical Properties of Ceramics (John Wiley & Sons, New York, 1996).

  24. C.A. Johnson, in Fracture Mechanics of Ceramics 5, edited by R.C. Bradt, A.G. Evans, D.P.H. Hasselman, and F.F. Lange (Plenum Press, New York-London, 1983), p. 365.

  25. S. Schmauder and H. Schubert, J. Am. Ceram. Soc. 68, 533 (1986).

    Google Scholar 

  26. A. Paterson and R. Stevens, J. Mater. Res. 1, 295 (1986).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Muñoz-Saldaña, J., Balmori-Ramírez, H., Jaramillo-Vigueras, D. et al. Mechanical properties and low-temperature aging of tetragonal zirconia polycrystals processed by hot isostatic pressing. Journal of Materials Research 18, 2415–2426 (2003). https://doi.org/10.1557/JMR.2003.0337

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.2003.0337

Navigation