Skip to main content
Log in

Laser-induced surface perturbations in silicon

  • Articles
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

In this paper it is shown that the initial stages in the laser-induced roughening in silicon is independent of the atmosphere used, whether it is Ar, vacuum, or SF6. It is also shown that the morphology that results after a few hundred laser pulses strongly depends on the crystallographic orientation of the surface. The morphological features that appear in this first stage have been related to the nature of the solidification process that follows laser melting. A second stage in the roughening process with a dramatic change in morphology takes place when a surface with deep depressions and hills is further irradiated in SF6. Very deep etching occurs in the depressions promoting the formation of microholes that with further irradiation lead to cone formation. It is further shown that the distance between microholes is equal to the distance between the depressions that formed as the initial perturbations developed. Then the wavelength of the initial perturbation and by extension the distance between microholes has been estimated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T-H. Her, R.J. Finlay, C. Wu, S. Deliwala, and E. Mazur, Appl. Phys. Lett . 73, 1673 (1998).

    Article  CAS  Google Scholar 

  2. F. Sanchez, J.L. Morenza, and V. Trtik, Appl. Phys. Lett. 75, 3302 (1999).

    Article  CAS  Google Scholar 

  3. F. Sanchez, J.L. Morenza, R. Aguiar, J.C. Delgado, and M. Varela, Appl. Phys. Lett. 69, 62 (1996).

    Article  Google Scholar 

  4. J.D. Fowlkes, A.J. Pedraza, and D.H. Lowndes, Appl. Phys. Lett. 77, 1629 (2000).

    Article  Google Scholar 

  5. A.J. Pedraza, J.D. Fowlkes, and D.H. Lowndes, Appl. Phys. Lett. 77, 3018 (2000)

    Article  CAS  Google Scholar 

  6. V.V. Voronov, S.I. Dolgaev, S.V. Lavrishchev, A.A. Lyalin, A.V. Simakin, and G.A. Shafeev, Phys. Vib. 7, 131 (1999).

    Article  CAS  Google Scholar 

  7. M. Birnbaum, J. Appl. Phys. 36, 3688 (1965).

    Google Scholar 

  8. G.N. Maracus, G.L. Harris, C.A. Lo, and R.A. McFarlane, Appl. Phys. Lett. 33, 453 (1978).

    Article  CAS  Google Scholar 

  9. N. Tsukada, S. Sugata, and Y. Mita, Appl. Phys. Lett. 42, 424 (1983).

    Article  Google Scholar 

  10. J.E. Sipe, J.F. Young, J.S. Preston, and H.M. van Driel, Phys. Rev. B 27, 1141 (1983).

    Article  CAS  Google Scholar 

  11. J.F. Young, J.S. Preston, H.M. van Driel, and J.S. Sipe, Phys. Rev. B 27, 1155 (1983).

    Article  CAS  Google Scholar 

  12. I. Ursu, I.N. Mihailescu, A.I. Popa, A.M. Prokhorov, V.P. Ageev, A.A. Gorbunov, and V.I. Konov, J. Appl. Phys. 58, 3909 (1985).

    Article  CAS  Google Scholar 

  13. S. Jesse, A.J. Pedraza, J.D. Fowlkes, J.D. Budai, and D.H. Lowndes, J. Mater. Res. (submitted for publication).

    Article  CAS  Google Scholar 

  14. J. Bloem and L.J. Gilling, Curr. Top. Mater. Sci. 1, 277 (1978).

  15. J.M. Bennett and L. Mattsson, in Introduction to Surface Roughness and Scattering (Optical Society of America, Washington, D.C., 1989), p. 19.

    Google Scholar 

  16. S. Jesse, A.J. Pedraza, J.D. Fowlkes, J. Budai, and D.H. Lowndes, to be published in the MRS Symposium on Microcrystalline and Nanocrystalline Semiconductor Materials and Structures (2001).

    Google Scholar 

  17. B. Bauerle, Laser Processing and Chemistry, 2nd ed. (Springer, Berlin, Germany, 1996), p. 253.

  18. K.R. Williams, in Properties of Crystalline Silicon, edited by R. Hull (Datareviews Series No. 20, INSPEC, London, United Kingdom, 1999), p. 853.

    Book  Google Scholar 

  19. R.F. Wood and G.E. Jellison Jr, in Semiconductors and Semimetals, edited by R.F. Wood, C.W. White, and R.T. Young (Academic Press, Orlando, FL, 1984), Vol. 23, p. 165.

    Google Scholar 

  20. S. De Unamuno and E. Fogarassy, Appl. Surf. Sci. 36, 1 (1989).

    Google Scholar 

  21. F. Heinrich and O. Bostanjoglo, Appl. Surf. Sci. 54, 244 (1992).

    Article  Google Scholar 

  22. S.I. Anisimov, V.A. Khokhlov, Instabilities in Laser-Matter Interaction (CRC Press, Inc., Boca Raton, FL, 1995).

    Article  Google Scholar 

  23. A.B. Brailovsky, S.V. Gaponov, and V.I. Luchin, Appl. Phys. A 61, 81 (1995).

    Google Scholar 

  24. E.B. Levchenko and L. Chernyakov, J. Appl. Mech. Tech. Phys. 6, 870 (1983).

    Article  Google Scholar 

  25. R.M. Feenstra and J.A. Stroscio, Phys. Rev. Lett. 59, 2173 (1987).

    Article  Google Scholar 

  26. G.D. Crapper, in Introduction to water waves (Ellis Horwood Ltd. John Wiley & Sons, New York, 1984).

    Article  CAS  Google Scholar 

  27. S. Andersson and A.D Wadsley, Acta Crystallogr. 14, 1245 (1961).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. J. Pedraza.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pedraza, A.J., Jesse, S., Guan, Y.F. et al. Laser-induced surface perturbations in silicon. Journal of Materials Research 16, 3599–3608 (2001). https://doi.org/10.1557/JMR.2001.0493

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.2001.0493

Navigation