Skip to main content
Log in

Thermochemistry of microporous silicotitanate phases in the Na2O–Cs2O–SiO2–TiO2–H2O system

  • Articles
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Microporous silicotitanates can potentially be used as ion exchangers for removal of Cs+ from radioactive waste solutions. The enthalpies of formation from constituent oxides for two series of silicotitanates at 298 K have been determined by drop-solution calorimetry into molten 2PbO · B2O3 at 974 K: the (Na1−xCsx)3Ti4Si3O15(OH) · nH2O (n = 4 to 5) phases with a cubic structure (P43m), and the (Na1−xCsx)3Ti4Si2O13(OH) · nH2O (n = 4 to 5) phases with a tetragonal structure (P42/mcm). The enthalpies of formation from the oxides for the cubic series become more exothermic as Cs/(Na + Cs) increases, whereas those for the tetragonal series become less exothermic. This result indicates that the incorporation of Cs in the cubic phase is somewhat thermodynamically favorable, whereas that in the tetragonal phase is thermodynamically unfavorable and kinetically driven. In addition, the cubic phases are more stable than the corresponding tetragonal phases with the same Cs/Na ratios. These disparities in the energetic behavior between the two series are attributed to their differences in both local bonding configuration and degree of hydration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. M.W. Anderson, O. Terasaki, T. Ohsuna, P.J.O. Malley, A. Phillipou, S.P. MacKay, A. Ferreira, J. Rocha, and S. Lidin, Philos. Mag. B 71, 813 (1995).

    Article  CAS  Google Scholar 

  2. M.D. Nyman, T.M. Nenoff, L. Wang, R.C. Ewing, and B. Gu, (unpublished).

  3. R.G. Anthony, C.V. Philip, and R.G. Dosch, Waste Management 13, 503 (1993).

    Article  CAS  Google Scholar 

  4. M.L. Balmer and B.C. Bunker, Inorganic ion exchange evaluation and design—silicotitanate ion exchange waste conversion, Pacific Northwest Laboratory Report No. PNL-10460 (1995).

  5. Y. Su, M.L. Balmer, L. Wang, B.C. Bunker, N. Nyman, T. Nenoff, and A. Navrotsky, in Scientific Basis for Nuclear Waste XXII, edited by D.J. Wronkiewicz and J.H. Lee (Mater. Res. Soc. Symp. Proc. 556, Warrendale, PA 1999), p. 77.

  6. M.A. Roberts, G. Sankar, J.M. Thomas, R.H. Jones, H. Du, J. Chen, W. Pang, and R. Xu, Nature 381, 401 (1996).

    Article  CAS  Google Scholar 

  7. M.S. Dadachov, J. Rocha, A. Ferreira, Z. Lin, and M.W. Anderson, Chem. Commun. No. 24 2371 (1997).

  8. A. Navrotsky, Phys. Chem. Miner. 24, 222 (1997).

    Article  CAS  Google Scholar 

  9. E.A. Behrens, D.M. Poojary, and A. Clearfield, Chem. Mater. 8, 1236 (1996).

    Article  CAS  Google Scholar 

  10. W.T.A. Harrison, T.E. Gier, and G.D. Stucky, Zeolites 15, 408 (1995).

    Article  CAS  Google Scholar 

  11. D.M. Poojary, A.I. Bortun, L.N. Bortun, and A. Clearfield, Inorg. Chem. 35, 6131 (1996).

    Article  CAS  Google Scholar 

  12. D.M. Poojary, R.A. Cahill, and A. Clearfield, Chem. Mater. 6, 2364 (1994).

    Article  CAS  Google Scholar 

  13. A.C. Larson, and R.B. Von Dreele, GSAS, General Structure Analysis System, Los Alamos National Laboratory Report No. LAUR 86-748 (1994).

  14. P. Thompson, D.E. Cox, and J. Hastings, J. Appl. Crystallogr. 20, 79 (1987).

    Article  CAS  Google Scholar 

  15. A. Navrotsky, R.P. Rapp, E. Smelik, P. Burnly, S. Circone, L. Chai, K. Bose, and H.R. Westrich, Am. Mineral 79, 1099 (1994).

    CAS  Google Scholar 

  16. I. Kiseleva, A. Navrotsky, I.A. Belitsky, and B.A. Fursenko, Am. Mineral 81, 668 (1996).

    Article  CAS  Google Scholar 

  17. R.L. Putnam, A. Navrotsky, B.F. Woodfield, J. Boerio-Goates, and J.L. Shapiro, J. Chem. Thermodynamics 31, 229 (1999).

    Article  CAS  Google Scholar 

  18. R.A. Robie, and B.S. Hemingway, Thermodynamic Properties of Minerals and Related Substances at 298.15 K and 1 Bar (105 Pascals) Pressure and at Higher Temperatures, Geological Survey Bulletin No. 2131 (1995).

  19. M.J. Buerger, W.A. Dollase, and I. Garaycochea-Wittke, Z. Kristallogr. 125, 92 (1967).

    Article  CAS  Google Scholar 

  20. M.S. Dadachov and W.T.A. Harrison, J. Solid State Chem. 134, 409 (1997).

    Article  CAS  Google Scholar 

  21. G.K. Johnson and K.H. Gayer, J. Chem. Thermodynamics 12, 705 (1980).

    Article  CAS  Google Scholar 

  22. A. Navrotsky, Am. Mineral. 79, 589 (1994).

    CAS  Google Scholar 

  23. B.N. Roy and A. Navrotsky, J. Am. Ceram. Soc. 67, 606 (1984).

    Article  CAS  Google Scholar 

  24. S-H. Shim, A. Navrotsky, T.R. Gaffney, and E. MacDougall, Am. Mineral. 84, 1870 (1999).

    Article  CAS  Google Scholar 

  25. B.C. Bunker and M.L. Balmer (unpublished).

  26. I. Petrovic, A. Navrotsky, M.E. Davis, and S.I. Zones, Chem. Mater. 5, 1805 (1993).

    Article  CAS  Google Scholar 

  27. Y. Hu, A. Navrotsky, C-Y. Chen, and M.E. Davis, Chem. Mater. 7, 1816 (1995).

    Article  CAS  Google Scholar 

  28. G.A. Krestov, Thermodynamics of Solvation, English ed. (Ellis Horwood, New York, 1990).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xu, H., Navrotsky, A., Nyman, M.D. et al. Thermochemistry of microporous silicotitanate phases in the Na2O–Cs2O–SiO2–TiO2–H2O system. Journal of Materials Research 15, 815–823 (2000). https://doi.org/10.1557/JMR.2000.0116

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.2000.0116

Navigation