Skip to main content
Log in

Heteroepitaxial growth of lanthanum aluminate films derived from mixed metal nitrates

Journal of Materials Research Aims and scope Submit manuscript

Abstract

Epitaxial lanthanum aluminate (LaAlO3) thin films were deposited on single-crystal substrates by pyrolysis of spin-on mixed nitrate precursors. The films are epitaxial without any second phase. TEM micrographs show that all of these films have pores with sizes ranging from 5 to 30 nm. Grain boundaries are not observed. Selected area diffraction shows that the films are single-crystal-like, despite the porosity. All the films are smooth and crack-free. The precursors first decompose into an amorphous mixture. Heterogeneous nucleation occurs on the lattice-matched, single-crystal substrate surface. The epitaxial films grow upward and consume the amorphous regions. The crystallization temperature of LaAlO3 is lower for thin films than for bulk samples due to nucleation on the substrate. The crystallization of LaAlO3 does not exhibit linear growth kinetics. The Johnson–Mehl–Avrami exponent of growth is between 1.4 and 1.5. This deviation from the linear growth model (n = 1) can be attributed to continuous nucleation on the substrate/film interface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

References

  1. D. M. Hwang, T. Venkatesan, C. C. Chang, L. Nazar, X. D. Wu, A. Inam, and M. S. Hegde, Appl. Phys. Lett. 54 (17), 1702 (1989).

    Article  CAS  Google Scholar 

  2. G. Koren, A. Gupta, and R. J. Basemen, Appl. Phys. Lett. 54 (19), 1920 (1989).

    Article  CAS  Google Scholar 

  3. G. C. Xiong and S. Z. Wang, Appl. Phys. Lett. 55 (9), 902 (1989).

    Article  CAS  Google Scholar 

  4. M. P. Siegal, J. M. Phillips, R. B. van Dover, T. H. Tiefel, and J. H. Marshall, J. Appl. Phys. 68, 6353 (1990).

    Article  CAS  Google Scholar 

  5. A. E. Lee, C. E. Platt, J. F. Burch, R. W. Simon, J. P. Goral, and M. M. al-Jassim, Appl. Phys. Lett. 57 (19), 2019 (1990).

    Article  CAS  Google Scholar 

  6. E. Sader, Supercond. Sci. Technol. 6 (7), 547 (1993).

    Article  CAS  Google Scholar 

  7. P. C. McIntyre, M. J. Cima, and M. F. Ng, J. Appl. Phys. 68 (8), 4183 (1990).

    Article  CAS  Google Scholar 

  8. G. Braustein, G. R. Paz-Pujalt, M. G. Mason, T. N. Blanton, C. L. Barnes, and D. Margevich, J. Appl. Phys. 73 (2), 961 (1994).

    Article  Google Scholar 

  9. D. P. Partlow and J. Greggi, J. Mater. Res. 2, 595 (1987).

    Article  CAS  Google Scholar 

  10. K. Nashimoto, M. J. Cima, P. C. McIntyre, and W. E. Rhine, J. Mater. Res. 10, 2564 (1995).

    Article  CAS  Google Scholar 

  11. H. Endo and M. J. Cima, in Ferroelectric Thin Films III, edited by B. A. Tuttle, E. R. Myers, S. B. Desu, and P. K. Larsen (Mater. Res. Soc. Symp. Proc. 310, Pittsburgh, PA, 1993), p. 325.

  12. C. Chen, D. F. Ryder, Jr., and W. A. Spurgeon, J. Am. Ceram. Soc. 72 (8), 1495 (1989).

    Article  CAS  Google Scholar 

  13. M. F. Ng and M. J. Cima, in Mechanism of Thin-Film Evolution, edited by S. M. Yalisove, C. V. Thompson, and D. J. Eagle-sham (Mater. Res. Soc. Symp. Proc. 317, Pittsburgh, PA, 1994), p. 547.

  14. M. F. Ng and M. J. Cima, in Mechanism of Thin-Film Evolution, edited by S. M. Yalisove, C. V. Thompson, and D. J. Eaglesham (Mater. Res. Soc. Symp. Proc. 317, Pittsburgh, PA, 1994), p. 577.

  15. M. F. Ng and M. J. Cima, in Epitaxial Oxide Thin Films and Heterostructures, edited by D. K. Fork, J. M. Phillips, R. Ramesh, and R. M. Wolf (Mater. Res. Soc. Symp. Proc. 341, Pittsburgh, PA, 1994), p. 145.

  16. R. Kromann, J. B. Bilde-Søresnsen, R. de Veus, N. H. Andersen, P. Vase, and T. Freltoft, J. Appl. Phys. 71, 3419 (1992).

    Article  CAS  Google Scholar 

  17. B. A. Tuttle, T. J. Headley, B. C. Bunker, R. W. Schwartz, T. J. Zender, C. L. Hernandez, D. C. Goodnow, R. J. Tissot, J. Michael, and A. H. Carim, J. Mater. Res. 7, 1876 (1992).

    Article  CAS  Google Scholar 

  18. A. van Veen, A. H. Reader, D. J. Gravensteijn, A. A. and van Gorkum, Thin Solid Film 241, 206 (1993).

    Article  Google Scholar 

  19. B. P. Chang, Ceramics Processing Research Laboratory, Massachusetts Institute of Technology, unpublished work.

  20. R. Roy, Y. Suwa, and S. Konarneni, Science of Ceramic Chemical Processing (Wiley, New York, 1986), p. 247.

    Google Scholar 

  21. G. Vilmin, S. Komarneni, and R. Roy, J. Mater. Res. 2, 489 (1987).

    Article  CAS  Google Scholar 

  22. A. M. Kazakos, S. Komarneni, and R. Roy, J. Mater. Res. 5, 1095 (1990).

    Article  CAS  Google Scholar 

  23. C. K. Kwok and S. B. Desu, J. Mater. Res. 8, 339 (1993).

    Article  Google Scholar 

  24. P. C. McIntyre, Sc.D. Thesis, Department of Materials Science and Engineering, Massachusetts Institute of Technology (1993).

  25. S. J. Golden, F. F. Lange, D. R. Clarke, L. D. Chang, and C. T. Necker, Appl. Phys. Lett. 61 (3), 351 (1992).

    Article  CAS  Google Scholar 

  26. G. L. Olson and J. A. Roth, Mater. Sci. Rep. 3, 1 (1988).

    Article  CAS  Google Scholar 

  27. K. T. Miller, C. J. Chan, M. G. Cain, and F. F. Lange, J. Mater. Res. 8, 169 (1993).

    Article  CAS  Google Scholar 

  28. M. A. Parker, T. L. Hylton, K. R. Coffey, and J. K. Howard, in Evolution of Surface and Thin Film Microstructure, edited by H. A. Atwater, E. H. Chason, M. L. Grabow, and M. G. Lagally (Mater. Res. Soc. Symp. Proc. 280, Pittsburgh, PA, 1993), p. 625.

  29. C. V. Thompson, Annu. Rev. Mater. Sci. 20, 245 (1990).

    Article  CAS  Google Scholar 

  30. H. Fay and C. D. Brandle, Crystal Growth, Supplement to Phys. and Chem. Solids, 51 (1966).

  31. P. Wu and A. D. Pelton, J. Alloys Compounds 179, 259 (1992).

    Article  CAS  Google Scholar 

  32. J. W. Cahn, Cata Metall. 8, 554 (1960).

    CAS  Google Scholar 

  33. J. W. Cahn, Crystal Growth, Supplement to Phys. and Chem. Solids, 681 (1966).

  34. K. A. Jackson, Prog. Solid State Chem. 4, 53 (1967).

    Article  CAS  Google Scholar 

  35. B. D. Cullity, Elements of X-ray Diffraction (Addison-Wesley Publishing Company, Reading, MA, 1978).

    Google Scholar 

  36. M. Avrami, J. Chem. Phys. 7, 1103 (1939).

    Article  CAS  Google Scholar 

  37. W. A. Johnson and R. F. Mehl, Trans. AIME 135, 416 (1939).

    Google Scholar 

  38. Q. Z. Hong, J. G. Zhu, J. W. Mayer, W. Xia, and S. S. Lau, J. Appl. Phys. 71 (4), 1768 (1992).

    Article  CAS  Google Scholar 

  39. C. Lee, T. E. Haynes, and K. S. Jones, Appl. Phys. Lett. 62 (5), 501 (1993).

    Article  CAS  Google Scholar 

  40. D. C. Paine, N. D. Evans, and N. G. Stoffel, J. Appl. Phys. 70 (8), 4278 (1991).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ng, M.F., Cima, M.J. Heteroepitaxial growth of lanthanum aluminate films derived from mixed metal nitrates. Journal of Materials Research 12, 1306–1314 (1997). https://doi.org/10.1557/JMR.1997.0179

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.1997.0179

Navigation