Skip to main content
Log in

Diffraction analysis of nonuniform stresses in surface layers: Application to cracked TiN coatings chemically vapor deposited on Mo

  • Articles
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Variations of residual stresses in layers on substrates can occur in directions parallel and perpendicular to the surface as a result of compositional inhomogeneity and/or porosity or cracks. Diffraction methods to evaluate such stress variations are presented. Comparison of the experimental value for the stress with a calculated value of the “diffraction-averaged stress,” on the basis of a model for the local stresses, proved to be a useful method of stress analysis. It is shown that a direct evaluation of occurring stress-depth profiles is less practical. The method of stress analysis proposed, is applied to chemically vapor deposited TiN coatings on Mo substrates. In these coatings a large tensile stress parallel to the surface develops during cooling from the deposition temperature, due to difference in thermal shrink between coating and substrate. As a result of the cooling-induced stress, cracking of the coating occurs. The mesh width of the crack pattern allows determination of the fracture-surface energy and the fracture toughness of the coating material. Conceiving the cracked coatings as assemblies of freestanding columns, and assuming full elastic accommodation of the thermal mismatch at the column/substrate interface, the stress variations in the coating are calculated. On this basis the diffraction-averaged stress and the depth profile of the laterally averaged stress can be predicted accurately for the cracked TiN layers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. D. Nix, Metall. Trans. A 20A, 2217 (1989).

    Article  CAS  Google Scholar 

  2. R. W. Hoffman, Thin Solid Films 89, 155 (1982).

    Article  CAS  Google Scholar 

  3. M. Murakami, T. Kuan, and I.A. Blech, in Treatise on Mater. Sci. and Technol., edited by K. N. Tu and R. Rosenberg (Academic Press, New York, 1982), Vol. 24, pp. 163, 210.

  4. F. M. D’Heurle, Int. Mater. Rev. 34, 53 (1989).

    Article  Google Scholar 

  5. A. G. Evans, M. D. Dory, and M. S. Hu, J. Mater. Res. 3, 1043 (1988).

    Article  CAS  Google Scholar 

  6. W. G. Sloof, H. J. M. Rijpkema, R. Delhez, Th.H. de Keijser, and E. J. Mittemeijer, Surf. Eng. 3, 59 (1987).

    Article  CAS  Google Scholar 

  7. W. G. Sloof, R. Delhez, Th.H. de Keijser, and E. J. Mittemeijer, J. Mater. Sci. 22, 1701 (1987).

    Article  CAS  Google Scholar 

  8. W. G. Sloof, M. A. J. Somers, R. Delhez, Th.H. de Keijser, and E. J. Mittemeijer, in Residual Stresses in Science and Technology, edited by E. Macherauch and V. Hauk (Deutsche Gesellschaft für Metallkunde, Oberursel, 1987), Vol. 1, pp. 493, 500.

  9. R. Delhez, Th.H. de Keijser, and E. J. Mittemeijer, Surf. Eng. 3, 331 (1987).

    Article  CAS  Google Scholar 

  10. M. A. J. Somers and E. J. Mittemeijer, Metall. Trans. A 21A, 189 (1990).

    Article  CAS  Google Scholar 

  11. S. Komiya, N. Umezu, and C. Hayashi, Thin Solid Films 63, 341 (1979).

    Article  CAS  Google Scholar 

  12. T. A. Mäntylä, P. J. Helevirta, T. T. Lepistö, and P. T. Siitonen, Thin Solid Films 126, 275 (1985).

    Article  Google Scholar 

  13. P. A. Dearnley, Surf. Eng. 1, 43 (1985).

    Article  CAS  Google Scholar 

  14. E. Brozeit and H. M. Gabriel, Z. Werkstofftech. 11, 31 (1980).

    Article  Google Scholar 

  15. I. Yoshizawa and K. Kamada, J. Nucl. Mater. 122&123, 1309 (1984).

    Article  Google Scholar 

  16. I. C. Noyan and J.B. Cohen, in Residual Stress-Measurement by Diffraction and Interpretation (Springer-Verlag Inc., New York, 1987), p. 121.

    Google Scholar 

  17. V. Hauk and E. Macherauch, in Adv. X-Ray Anal., edited by J. B. Cohen et al. (Plenum Press, New York, 1984), Vol. 27, pp. 81, 99.

  18. H. Behnken and V. Hauk, Z. Metallk. 77, 620 (1986).

    CAS  Google Scholar 

  19. B. Eigenmann, B. Scholtes, and E. Macherauch, Mater.-wiss. u. Werkstofftech. 21, 257 (1990).

    Article  CAS  Google Scholar 

  20. M.G. Moore and W.P. Evans, Trans. Soc. Automotive Eng. (SAE) 66, 340 (1958).

    Google Scholar 

  21. G. F. Bastin, H. J.M. Heijligers, and F. J. J. van Loo, Scanning 8, 45 (1986).

    Article  CAS  Google Scholar 

  22. C. R. Hubbard, J. Appl. Crystallogr. 16, 285 (1983).

    Article  CAS  Google Scholar 

  23. C. S. Barrett and T. B. Massalski, in Structure of Metals (Perga-mon Press, Oxford, England, 1980), p. 204.

    Google Scholar 

  24. R. Kieffer and F. Beneskovsky, in Hartstoffe (Springer, Wien, Austria, 1963), p. 303.

    Book  Google Scholar 

  25. A.J. Perry, Thin Solid Films 193/194, 463 (1990).

    Article  Google Scholar 

  26. X. Jiang, M. Wang, K. Schmidt, E. Dunlop, J. Haupt, and W. Gissler, J. Appl. Phys. 69, 3053 (1991).

    Article  CAS  Google Scholar 

  27. D. S. Stone, K. B. Yoder, and W. D. Sproul, J. Vac. Sci Technol. A 9, 2543 (1991).

    Article  CAS  Google Scholar 

  28. J. A. Sue, Surf. Coating Technol. 54/55, 154 (1992).

    Article  Google Scholar 

  29. J. Birkholzer and V. Hauk, Harterei-Tech. Mitt. 48, 25 (1993).

    Google Scholar 

  30. J-E. Sundgren, Thin Solid Films 128, 21 (1985).

    Article  CAS  Google Scholar 

  31. A.J. Perry, Thin Solid Films 170, 63 (1989).

    Article  CAS  Google Scholar 

  32. W. Kress, P. Roedhammer, H. Bilz, W. D. Teuchert, and A.N. Christensen, Phys. Rev. B 17, 111 (1978).

    Article  CAS  Google Scholar 

  33. F. Bollenrath, V. Hauk, and E. H. Muller, Z. Metallk. 58, 76 (1967).

    CAS  Google Scholar 

  34. S. Nagakura, T. Kusunoki, F. Kakimoto, and Y. Hirosutu, J. Appl. Crystallogr. 8, 65 (1975).

    Article  Google Scholar 

  35. L. Wolff, G. F. Bastin, and H. Y. M. Heijligers, Solid State Ionics 16, 105 (1977).

    Article  Google Scholar 

  36. C. J. Smithells and E. A. Brandes, in Metals Reference Book, 5th ed. (Butterworths & Co. Ltd., London, England, 1976), p. 100.

    Google Scholar 

  37. Y. S. Touloukian, R. K. Kirby, R. E. Taylor, and T. Y. R. Lee, in Thermophysical Properties of Matter, Thermal Expansion—Nonmetallic Solids (IFI/Plenum, New York, Washington, DC, 1977), Vol. 13, pp. 1147, 1151.

  38. Y. S. Touloukian, R. K. Kirby, R. E. Taylor, and P. D. Desai, in Thermophysical Properties of Matter, Thermal Expansion-Metallic Elements and Alloys (IFI/Plenum, New York, Washington, DC, 1976), Vol. 12, pp. 208, 216.

  39. L. E. Toth, in Transition Metal Carbides and Nitrides (Academic Press, New York, 1971), pp. 169, 174.

    Google Scholar 

  40. B. R. Lawn, in Fracture of Brittle Solids, 2nd ed. (Cambridge University Press, Cambridge, England, 1993), pp. 1, 15, and 55.

    Book  Google Scholar 

  41. H.J. Frost and M. F. Ashby, in Deformation-Mechanism Maps, The Plasticity and Creep of Metals and Ceramics (Pergamon Press, Oxford, England, 1982), pp. 80, 83.

    Google Scholar 

  42. W. G. Sloof, Ph.D. Thesis (Delft University Press, The Netherlands, 1996).

  43. B.J. Aleck, J. Appl. Mech. 16, 118 (1949).

    Google Scholar 

  44. I.A. Blech and A.A. Levi, J. Appl. Mech. 48, 442 (1981).

    Article  Google Scholar 

  45. J.J. Blech and Y. Kantor, Computers and Structures 18, 609 (1984).

    Article  Google Scholar 

  46. Z. Suo, J. Vac. Sci. Technol. A 11, 1367 (1993).

    Article  CAS  Google Scholar 

  47. M. S. Hu, M. D. Thouless, and A. G. Evans, Acta Metall. 36, 1301 (1988).

    Article  CAS  Google Scholar 

  48. M. D. Drory, M. D. Thouless, and A. G. Evans, Acta Metall. 36, 2019 (1988).

    Article  CAS  Google Scholar 

  49. M.S. Hu and A.G. Evans, Acta Metall. 37, 917 (1989).

    Article  CAS  Google Scholar 

  50. J.W. Hutchinson and Z. Suo, Adv. Appl. Mech. 29, 63 (1992).

    Article  Google Scholar 

  51. M.T. Laugier, J. Mater. Sci. Lett. 2, 419 (1983).

    Article  CAS  Google Scholar 

  52. A. E.H. Love, in A Treatise on the Mathematical Theory of Elasticity, 4th ed. (University Press, Cambridge, England, 1952), pp. 74, 91.

    Google Scholar 

  53. S. P. Timoshenko and J.N. Goodier, in Theory of Elasticity, 3rd ed. (McGraw-Hill, Tokyo, Japan, 1982), pp. 1, 14, and 246.

    Google Scholar 

  54. CM. van Baal, Phys. Status Solidi A 77, 521 (1983).

    Article  Google Scholar 

  55. I.C. Noyan, Metall. Trans. A 14A, 1907 (1983).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sloof, W.G., Kooi, B.J., Delhez, R. et al. Diffraction analysis of nonuniform stresses in surface layers: Application to cracked TiN coatings chemically vapor deposited on Mo. Journal of Materials Research 11, 1440–1457 (1996). https://doi.org/10.1557/JMR.1996.0181

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.1996.0181

Navigation