Skip to main content
Log in

The work-of-fracture of brittle materials: Principle, determination, and applications

  • Articles
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Theoretical and empirical considerations of the work-of-fracture, γwof, of brittle materials are reviewed. The energy principle of the work-of-fracture provides a modified Irwin similarity relationship in the nonlinear fracture mechanics regime. Various microscopic deformation and fracture processes in the crack wake and the crack-face contact regions contribute to the rising R-curve behavior of brittle materials, and then significantly affect the work-of-fracture, resulting in the work-of-fracture that is dependent on the dimension and geometry of test specimens as well as test methods. The requisite for the work-of-fracture to be a material characteristic resistance to failure is discussed in relation to the R-curve behavior. Some examples of the work-of-fracture test results demonstrate the usefulness of the work-of-fracture for designing brittle materials with improved toughness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A.A. Griffith, Trans. R. Soc. Lond. A 221, 163 (1920).

    Google Scholar 

  2. A.M. Stoneham, J. Am. Ceram. Soc. 64, 54 (1981).

    Article  CAS  Google Scholar 

  3. R. W. Davidge, Mechanical Behavior of Ceramics, Chap. 3 (Cambridge University Press, Cambridge, UK, 1979).

  4. G. D. Swanson, J. Am. Ceram. Soc. 55, 48 (1972).

    Article  CAS  Google Scholar 

  5. Special issue of fracture and damage of concrete and rock, Eng. Fract. Mech. 35 (1990).

  6. H. Hübner and W. Jillek, J. Mater. Sci. 12, 117 (1977).

    Article  Google Scholar 

  7. M. Sakai, J. Yoshimura, Y. Goto, and M. Inagaki, J. Am. Ceram. Soc. 71, 609 (1988).

    Article  CAS  Google Scholar 

  8. M. Sakai and R.C. Bradt, J. Ceram. Soc. Jpn. 96, 801 (1988).

    Article  CAS  Google Scholar 

  9. D.J. Green, R.H.J. Hannink, and M.V. Swain, Transformation Toughening of Ceramics, Chap. 3 (CRC Press, Boca Raton, FL, 1989).

  10. R.W. Hertzberg, Deformation and Fracture Mechanics of Engineering Materials, Chap. 8 (John Wiley, New York, 1983).

  11. J.R. Rice, J. Appl. Mech. 35, 379 (1968).

    Article  Google Scholar 

  12. J. Nakayama, J. Am. Ceram. Soc. 48, 583 (1965).

    Article  CAS  Google Scholar 

  13. H. G. Tattersall and G. Tappin, J. Mater. Sci. 1, 296 (1966).

    Article  Google Scholar 

  14. M. Sakai, Taikabutu Overseas 8, 4 (1988).

    Google Scholar 

  15. R. W. Davidge and G. Tappin, J. Mater. Sci. 3, 165 (1968).

    Article  CAS  Google Scholar 

  16. A. G. Atkins and Y. W. Mai, Elastic and Plastic Fracture (Ellis Horwood, Chichester, UK, 1985).

    Google Scholar 

  17. Z.P. Bazant and M.T. Kazemi, Int. J. Fract. 51, 121 (1991).

    Article  Google Scholar 

  18. P. E. Petersson, Cem. Cone. Res. 10, 78 (1980).

    Google Scholar 

  19. A. Hillerborg, Mater. Struct. 18, 407 (1986).

    Article  Google Scholar 

  20. M. Sakai, K. Urashima, and M. Inagaki, J. Am. Ceram. Soc. 66, 868 (1983).

    Article  Google Scholar 

  21. M. Sakai and H. Ichikawa, Int. J. Fract. 55, 65 (1992).

    Article  Google Scholar 

  22. M. Sakai and M. Inagaki, J. Am. Ceram. Soc. 72, 388 (1989).

    Article  CAS  Google Scholar 

  23. S. M. Barinov and V. Ya. Shevchenko, in Fracture Mechanics of Ceramics, edited by R. C. Bradt, D. P. H. Hasselman, D. Munz, M. Sakai, and V. Ya. Shevchenko (Plenum Press, New York, 1992), Vol. 9, pp. 209–217.

  24. S. M. Barinov, P. I. Andriashvili, and N. F. Tavadze, Proc. Acad. Sci. USSR 304, 1361 (1989).

    Google Scholar 

  25. R. Steinbrech, R. Knehans, and W. Schaarwachter, J. Mater. Sci. 18, 265 (1983).

    Article  Google Scholar 

  26. J. P. Berry, J. Mech. Phys. Solids 8, 194 (1960).

    Article  Google Scholar 

  27. ASTM Standard E399-83, Annual Book of ASTM Standards (American Society for Testing and Materials, Philadelphia, PA, 1983).

    Google Scholar 

  28. J. I. Bluhm, Eng. Fract. Mech. 7, 593 (1975).

    Article  Google Scholar 

  29. S. M. Barinov and V. Ya. Shevchenko, J. Mater. Sci. Lett. 11, 336 (1992).

    Article  CAS  Google Scholar 

  30. D. Munz, in Fracture Mechanics of Ceramics, edited by R. C. Bradt, A. G. Evans, D. P. H. Hasselman, and F. F. Lange (Plenum, New York, 1983), Vol. 6, pp. 1–26.

  31. D.J. Green, P.S. Nicholson, and J.D. Embury, J. Am. Ceram. Soc. 56, 619 (1973).

    Article  CAS  Google Scholar 

  32. H. Hübner and W. Strobl, Berichite Deutche Ker. Ges. 54, 117 (1977).

    Google Scholar 

  33. S. M. Barinov and V. Ya. Shevchenko, J. Mater. Sci. Lett. 10, 1293 (1991).

    Article  CAS  Google Scholar 

  34. B. Cotterell, E. Lee, and Y. W. Mai, Int. J. Fract. 20, 243 (1982).

    Article  Google Scholar 

  35. Y.W. Mai and B. Cotterell, Int. J. Fract. 24, 229 (1984).

    Article  Google Scholar 

  36. Y.W. Mai and B. Cotterell, Eng. Fract. Mech. 21, 123 (1985).

    Article  Google Scholar 

  37. Y.W. Mai and B. Cotterell, Int. J. Fract. 32, 105 (1986).

    Article  CAS  Google Scholar 

  38. F. H. Wittmann, H. Mihashi, and N. Nomura, Eng. Fract. Mech. 35, 107 (1990).

    Article  Google Scholar 

  39. M. Sakai and O. Shinkai, in Proceedings of the Second International Conference on Refractories (The Technical Association of Refractories, Tokyo, 1987), Vol. 2, pp. 869–880.

  40. D. P. H. Hasselman, J. Am. Ceram. Soc. 52, 600 (1969).

    Article  CAS  Google Scholar 

  41. Yu. L. Krassulin, V.N. Timofeev, S.M. Barinov, A.N. Asonov, A.B. Ivanov, and G.D. Shnyrev, Porous Structural Ceramics (Metallurgy Press, Moscow, 1980).

    Google Scholar 

  42. S.M. Barinov, Mater. Sci. Eng. A154, L11 (1992).

    Google Scholar 

  43. W. J. Clegg, K. Kendall, N. McW. Alford, T. W. Button, and J. D. Birchall, Nature 347, 455 (1990).

    Article  CAS  Google Scholar 

  44. S.M. Barinov, D.A. Ivanov, V. Ya. Shevchenko, and G.A. Fomina, J. Mater. Sci. 27, 5558 (1992).

    Article  CAS  Google Scholar 

  45. M. Sakai, R.C. Bradt, and D.B. Fischbach, J. Mater. Sci. 21, 1491 (1986).

    Article  CAS  Google Scholar 

  46. M. Sakai, S. Takeuchi, D.B. Fischbach, and R.C. Bradt, in Ceramic Microstructures ‘86 (Plenum, New York, 1988), pp. 869–876.

    Google Scholar 

  47. M. Sakai, J. Ceram. Soc. Jpn. 99, 983 (1991).

    Article  CAS  Google Scholar 

  48. T. Miyajima and M. Sakai, J. Mater. Res. 6, 2312 (1991).

    Article  CAS  Google Scholar 

  49. T. Suzuki and M. Sakai, Comp. Sci. Tech. (in press).

  50. M. Sakai and T. Miyajima, Comp. Sci. Technol. 40, 231 (1991).

    Article  Google Scholar 

  51. T. Miyajima and M. Sakai, J. Mater. Res. 6, 539 (1991).

    Article  CAS  Google Scholar 

  52. M. Sakai, ISIJ Int. 32, 937 (1992).

    Article  CAS  Google Scholar 

  53. T. Suzuki, M. Sato, and M. Sakai, J. Mater. Res. 7, 2869 (1992).

    Article  CAS  Google Scholar 

  54. T. Miyajima and M. Sakai, in Fracture Mechanics of Ceramics, edited by R. C. Bradt, D. P. H. Hasselman, D. Munz, M. Sakai, and V. Ya. Shevchenko (Plenum, New York, 1992), Vol. 9, pp. 83–96.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Barinov, S.M., Sakai, M. The work-of-fracture of brittle materials: Principle, determination, and applications. Journal of Materials Research 9, 1412–1425 (1994). https://doi.org/10.1557/JMR.1994.1412

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.1994.1412

Navigation