Skip to main content
Log in

High resolution electron microscopy of Al-Cu-Fe quasicrystals: Atomic structure and modeling

  • Articles
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

High quality Al-Cu-Fe quasicrystals have been studied at the atomic level with a high resolution microscope operating at 400 kV. When the incident beam is parallel to the fivefold axis, experimental bright-field images in thin regions of the specimen are found to be of two types, depending on the electron optical parameters employed. One of these images is of greater contrast than the other, but both types yield decagon-like image features. Close agreement is found between both types of contrast-enhanced micrographs and microscope image simulations of a realistic atomic model. This model involves the placement of overlapping Mackay icosahedra on a perfect quasicrystalline network. The limitation of resolving the projected atomic structure is discussed in terms of the contribution of different diffraction orders, considerations of specimen thickness, and optimal adjustment of the microscope objective lens defocus. A similar treatment is also applied to the threefold orientation where micrographs were taken under coherent imaging conditions. For the threefold pattern, fine modulations of the quasicrystalline lattice are obtained which are not observed under less coherent conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Shechtman, I. Blech, D. Gratias, and J.W. Cahn, Phys. Rev. Lett. 53 (20), 1951–1953 (1984).

    Article  Google Scholar 

  2. K. Hiraga, M. Hirabayashi, A. Inoue, and T. Matsumoto, J. Phys. Soc. Jpn. 54 (11), 4077–4080 (1985).

    Article  CAS  Google Scholar 

  3. K. Hiraga, M. Hirabayashi, A. Inoue, and T. Matsumoto, J. Microsc. 146, Pt. 3, 245–260 (1987).

    Article  Google Scholar 

  4. K. Hiraga, JEOL News 25E (1), 8–12 (1987).

    Google Scholar 

  5. A-P. Tsai, A. Inoue, and T. Matsumoto, Jpn. J. Appl. Phys. 26 (9), L1505–1507 (1987).

    Article  CAS  Google Scholar 

  6. K. Hiraga, B-P. Zhang, M. Hirabayashi, A. Inoue, and T. Matsumoto, Jpn. J. Appl. Phys. 27 (6), L951–953 (1988).

    Article  CAS  Google Scholar 

  7. T. Ishimasa, Y. Fukano, and M. Tsuchimori, Philos. Mag. Lett. 58 (3), 157–165 (1988).

    Article  CAS  Google Scholar 

  8. K. Hiraga and D. Shindo, Mater. Trans., JIM 31 (7), 567–572 (1990).

    Article  CAS  Google Scholar 

  9. K. Hiraga, in Quasicrystals: The State of the Art, edited by D.P. DiVincenzo and P. J. Steinhardt (World Scientific, Singapore, 1991), pp. 95–110.

    Book  Google Scholar 

  10. P. A. Bancel, Phys. Rev. Lett. 63 (25), 2741–2744 (1989).

    Article  CAS  Google Scholar 

  11. G.Y. Onoda, P.J. Steinhardt, D.P. DiVincenzo, and J.E.S. Socolar, Phys. Rev. Lett. 60 (25), 2653–2656 (1988).

    Article  CAS  Google Scholar 

  12. L.A. Bendersky, J.W. Cahn, and D. Gratias, in Quasicrystals and Incommensurate Structures in Condensed Matter, edited by M. J. Yacaman, D. Romeu, V. Castano, and A. Gomez (World Scientific, Singapore, 1990), pp. 337–355.

    Google Scholar 

  13. W. Krakow, J. Electron Microsc. Technique 1, 107–130 (1984).

    Article  CAS  Google Scholar 

  14. V. Elser, in Extended Icosahedral Structures, edited by M. V. Jaric and D. Gratias (Academic Press, 1989), pp. 105–136.

    Book  Google Scholar 

  15. V. Elser and C.L. Henley, Phys. Rev. Lett. 55, 197–210 (1985).

    Article  Google Scholar 

  16. P. A. Bancel, in Quasicrystals: The State of the Art, edited by D. P. DiVincenzo and P.J. Steinhardt (World Scientific, Singapore, 1991), pp. 17–56.

    Book  Google Scholar 

  17. C.L. Henley, Phys. Rev. B 43, 993–1020 (1991).

    Article  CAS  Google Scholar 

  18. C. L. Henley, private communication.

  19. S.E. Burkov, Phys. Rev. Lett. 67, 614–617 (1991).

    Article  CAS  Google Scholar 

  20. S. Ebalard and F. Spaepen, J. Mater. Res. 4, 39–43 (1989).

    Article  CAS  Google Scholar 

  21. V. Elser, Acta Crystallogr. A42, 36–43 (1986).

    Article  CAS  Google Scholar 

  22. M. Cornier-Quiquandon, A. Quivy, S. Lefebvre, E. Eliakim, G. Heger, A. Katz, and D. Gratias, Phys. Rev. B 44, 2071–2084 (1991).

    Article  CAS  Google Scholar 

  23. W. Krakow, Ultramicrosc. 18, 197–210 (1985).

    Article  CAS  Google Scholar 

  24. W. Krakow, in Computer-Based Microscopic Description of the Structure and Properties of Materials, edited by J. Broughton, W. Krakow, and S. T. Pantelides (Mater. Res. Soc. Symp. Proc. 63, Pittsburgh, PA, 1986), pp. 43–54.

    Google Scholar 

  25. W. Krakow, J. Electron Microsc. Technique 19, 366–378 (1991).

    Article  CAS  Google Scholar 

  26. A. P. Tsai, A. Inoue, and T. Matsumoto, Jpn. J. Appl. Phys. 27 (9), L1587–1590 (1988).

    Article  CAS  Google Scholar 

  27. K. Hiraga, M. Hirabayashi, A. P. Tsai, A. Inoue, and T. Matsumoto, Philos. Mag. Lett. 60, 201–205 (1989).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Krakow, W., DiVincenzo, D.P., Bancel, P.A. et al. High resolution electron microscopy of Al-Cu-Fe quasicrystals: Atomic structure and modeling. Journal of Materials Research 8, 24–37 (1993). https://doi.org/10.1557/JMR.1993.0024

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.1993.0024

Navigation