Skip to main content
Log in

Quantum clan model description of Bose-Einstein correlations

  • Published:
Acta Physica Hungarica Series A, Heavy Ion Physics

Abstract

We propose a novel numerical method of modeling Bose-Einstein correlations (BEC) observed among identical (bosonic) particles produced in multiparticle production reactions. We argue that the most natural approach is to work directly in the momentum space in which the Bose statistics of secondaries reveals itself in their tendency to bunch in a specific way in the available phase space. Because such procedure is essentially identical to the clan model of multiparticle distributions proposed some time ago, therefore we call it the Quantum Clan Model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Cf., for example, T. Csörgő, in Particle Production Spanning MeV and TeV Energies, eds. W. Kittel et al., NATO Science Series C, Vol. 554, Kluwer Acad. Pub. (2000), p. 203 [hep-ph/0001233]; W. Kittel, Acta Phys. Polon. B32 (2001) 3927; G. Alexander, Rep. Prog. Phys. 66 (2003) 481, and references therein.

  2. T. Osada, M. Maruyama and F. Takagi, Phys. Rev. D59 (1999) 014024.

    ADS  Google Scholar 

  3. W. Zajc, Phys. Rev. D53 (1987) 3396; R.L. Ray, Phys. Rev. C57 (1998) 2352; J.G. Cramer, Event Simulation of High-Order Bose-Einstein and Coulomb Correlations, Univ. of Washington preprint, 1996, unpublished.

    Google Scholar 

  4. L. Lönnblad and T. Sjöstrand, Eur. Phys. J. C2 (1998) 165; K. Fiałkowski, R. Wit and J. Wosiek, Phys. Rev. D58 (1998) 094013; T. Wibig, Phys. Rev. D53 (1996) 3586; B. Andersson, Acta Phys. Polon. B29 (1998) 1885; K. Geiger, J. Ellis, U. Heinz and U.A. Wiedemann, Phys. Rev. D61 (2000) 054002.

    Article  ADS  Google Scholar 

  5. K.J. Eskola, Nucl. Phys. A698 (2002) 78; S.A. Bass et al., Prog. Part. Nucl. 41 (1998) 225.

    Article  Google Scholar 

  6. O.V. Utyuzh, G. Wilk and Z. Włodarczyk, Phys. Lett. B522 (2001) 273; Acta Phys. Polon. B33 (2002) 2681.

    MATH  Google Scholar 

  7. A. Białas and A. Krzywicki, Phys. Lett. B354 (1995) 134; H. Merlitz and D. Pelte, Z. Phys. A351 (1995) 187; ibid. Z. Phys. A357 (1997) 175; U.A. Wiedemann et al., Phys. Rev. C56 (1997) R614; T. Csörgő and J. Zimányi, Phys. Rev. Lett. 80 (1998) 916; Heavy Ion Phys. 9 (1999) 241.

    Google Scholar 

  8. W.J. Knox, Phys. Rev. D10 (1974) 65; E.H. De Groot and H. Satz, Nucl. Phys. B130 (1977) 257; J. Kripfganz, Acta Phys. Polon. B8 (1977) 945; A.M. Cooper, O. Miyamura, A. Suzuki and K. Takahashi, Phys. Lett. B87 (1979) 393; F. Takagi, Prog. Theor. Phys. Suppl. 120 (1995) 201.

    ADS  Google Scholar 

  9. E.E. Purcell, Nature 178 (1956) 1447; A. Giovannini and H.B. Nielsen, Stimulated emission model for multiplicity fluctuations, The Niels Bohr Institute preprint, NBI-HE-73-17 (unpublished); Stimulated emission effect on multiplicity distribution, in Proc. IV. Int. Symp. on Multip. Hadrodynamics, Pavia, 1973, eds. F. Duimio, A. Giovannini and S. Ratii, p. 538.

    Article  ADS  Google Scholar 

  10. A. Giovannini and L. Van Hove, Z. Phys. C30 (1986) 381; see also P. Carruthers and C.S. Shih, Int. J. Mod. Phys. A2 (1986) 1447.

    Google Scholar 

  11. M. Biyajima, N. Suzuki, G. Wilk and Z. Włodarczyk, Phys. Lett. B386 (1996) 297.

    Google Scholar 

  12. F.S. Navarra, O.V. Utyuzh, G. Wilk and Z. Włodarczyk, Phys. Rev. D67 (2003) 114002.

    Google Scholar 

  13. W.A. Zajc, A pedestrian’s guide to interferometry, in Particle Production in Highly Excited Matter, eds. H.H. Gutbrod and J. Rafelski, Plenum Press, New York 1993, p. 435.

    Google Scholar 

  14. G.A. Kozlov, O.V. Utyuzh and G. Wilk, Phys. Rev. C68 (2003) 024901; Ukr. J. Phys. 48 (2003) 1313.

    Article  ADS  Google Scholar 

  15. K. Zalewski, Lecture Notes in Physics 539 (2000) 291.

    Article  ADS  MathSciNet  Google Scholar 

  16. J. Finkelstein, Phys. Rev. D37 (1988) 2446; D.-w. Huang, Phys. Rev. D58 (1998) 017501.

    ADS  Google Scholar 

  17. P. Abreu et al. (DELPHI Collab.), Phys. Lett. B286 (1992) 201; Phys. Lett. B247 (1990) 137.

    Google Scholar 

  18. J.T. Mitchell, J. Phys. G30 (2004) S819; H. Appelhäuser, ibid. J. Phys. S935.

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Wilk.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Utyuzh, O.V., Wilk, G. & Włodarczyk, Z. Quantum clan model description of Bose-Einstein correlations. Acta Phys. Hung. A 25, 83–88 (2006). https://doi.org/10.1556/APH.25.2006.1.7

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1556/APH.25.2006.1.7

Keywords

PACS

Navigation