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Abstract—Formal model based test derivation is now widely 

used in software testing. One of the formal models which is very 
close to software implementations is the model of an Extended 
Finite State machine (EFSM). Compared with an FSM the EFSM 
has predicates for condition representation and context variables. 
However, when deriving tests for an EFSM very complex 
reachability and distinguishability problem should be solved. For 
this reason, when deriving tests from an EFSM a number of FSM 
slices are used. In this paper, we discuss how to derive a test 
using an FSM slice with limited number of states and how to 
represent data in the PC memory for fast generation of such slice. 
Preliminary experimental results with protocol EFSMs are 
provided. 
 

Index Terms—Software testing, EFSM, computer 
representation  
 

I. INTRODUCTION 

HE complexity of digital systems and devices increases 
quickly and software is a usual part of almost each system 

or device. Thus, ad hoc testing of software implementations 
now is insufficient and a number of methods for formal model 
based software testing are proposed and widely used, since  
model based testing provides tests with the guaranteed fault 
coverage.  

One of formal models which is very close to software 
implementations is the model of an Extended Finite State 
machine (EFSM). The EFSM model extends the classic FSM 
model with input and output parameters, context variables, 
operations and predicates defined over context variables and 
input parameters. If specification domains of input parameters 
and context variables are finite then an EFSM can be unfolded 
to an equivalent FSM (FSM slice) by simulating its behavior 
with respect to all possible values of context variables and 
input vectors [1]. A test suite then is derived from the 
corresponding equivalent FSM. However, the number of states 
of such corresponding FSM grows exponentially, and thus, it 
is necessary to limit the maximal number of states and in this 
case, the corresponding FSM becomes nondeterministic. In 
this paper, we show how tests can be derived for such 
nondeterministic FSM slice. In order to derive tests effectively 
an efficient computer representation of the complex EFSM 
model is proposed in this paper.   

The structure of the paper is as follows. Section II contains 
preliminaries and a discussion how tests for an EFSM can be 
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derived when the number of a corresponding FSM is limited. 
Section III is devoted to EFSM computer representation. 
Section IV discusses preliminary experimental results with 
protocol EFSMs while Section V concludes the paper. 

 

II. PRELIMINARIES 

The EFSM Model 
An extended finite state machine [2] A is a pair (S, T) of a set 
of states S and a set of transitions T between states from S, 
such that each transition t ∈ T is a tuple (s, x, P, op, y, up, s )́, 
where: 

s, s∈́ S are the initial and final states of a transition; 
x ∈ X is an input, and Dinp-x is the set of possible input 

vectors, associated with the input x, i.e., each component of an 
input vector is the value of a corresponding input parameter 
associated with x; 

y ∈ Y is output, where Y is the set of outputs, and Dout-y is 
the set of  possible output vectors, associated with the output 
y, i.e. each component of an output vector corresponds to an 
output parameter associated with y; 

P, op, and up are functions, defined over input parameters, 
and context variables, namely: 

P: Dinp-x × DV → {True, False} is a predicate, where DV is a 
set of context vectors v;  

op: Dinp-x × DV → Dout-y is an output parameter update 
function; 

up: Dinp-x × DV → DV is a context update function. 
As in [2], we use the following definitions. 
Given an input x and a vector ρρρρ ∈ Dinp-x, the pair (x, ρρρρ) and 

vector from Dinp-x, is called a parameterized input. A sequence 
of parameterized inputs is called a parameterized input 
sequence. A context vector v ∈ DV is called a context of M. A 
configuration of M is a pair (s, v). Given a parameterized input 
sequence of an EFSM we can calculate the corresponding 
parameterized output sequence by simulating the behavior of 
the EFSM under the input sequence starting from the initial 
state and initial values of the context variables. 

As an example, consider the EFSM E in Figure 2 that 
corresponds to the C function f presented in Figure 1.  

 
 
 
 
 
 

On EFSM-based Test Derivation Strategies 1 
  

Aleksandr Nikitin, Natalia Kushik 

T 



 2 

int f(int *a, int size_a) 
{ 
int i, m; 
i = 0; 
m = a[0]; 
while(i < size_a) 
{ 
if(m < a[i]) m = a[i]; 
i++; 
} 
return m; 
} 
Figure 1. The function f  
 
Function f in Figure 1 returns the maximal integer in the 

array a where size_a is the cardinality of a. To obtain an 
EFSM that corresponds to the given C function we first 
determine the set S of states. Let S be the set S = {s1, s2, s3} 
where s1, s2, s3 are three different points in the C function. The 
state s1 corresponds to the beginning of the function f; the state 
s2 represents the state of the program before comparing i with 
size_a; the program moves to the state s3 if i is less than 
size_a. The set X of input consists of the array pointer *a and 
of the cardinality size_a of a. Input *a is a parameterized 
input, here index (item number) is a parameter. Output y ∈ Y 
is not parameterized; it corresponds to the variable m that is 
returned by the function f. We also add special input (and 
output) ‘NULL’ to specify cases when program accepts (or 
returns) no external data. The set P of predicates consists of P1 
and P2: P1 is true if i is less than size_a while P2 is true if m is 
less than a[i]. The variable i is the context variable. The 
corresponding EFSM E is presented in Figure 2. 

 

 
 
Figure 2. The EFSM E  
 
In this paper, we consider deterministic and complete 

EFSMs, i.e., for each parameterized input sequence there 
exists a single parameterized output sequence that is produced 

by the EFSM for the given input sequence.  
 
Unfolding a given EFSM to an equivalent FSM 
Given an EFSM A, in order to obtain an equivalent FSM F 

we proceed as follows. Given a state s of EFSM A, a context 
vector v, an input x and vector ρρρρ of input parameters, we 
derive the transition from configuration (s, v) under input (x, 
ρρρρ) in the corresponding FSM F. We first determine the 
outgoing transition (s, x, P, op, y, up, ś ) from state s where the 
predicate P is true for input vector ρρρρ and context vector v, 
update the context vector to the vector v´ according to the 
assignment up of this transition, determine the parameterized 
output yωωωω and add the transition (sv, xρρρρ, yωωωω, ś v´) to the set of 
transitions of the FSM. The obtained FSM has the same 
number of states as the number of different configurations (s, 
v) of the EFSM F that are reachable from the initial state.  

Such unfolding can help to detect transfer, predicate, and 
assignment faults of the given EFSM A. However, it is known 
that the simulation usually leads to a state explosion problem. 
That is the reason why the maximal number of states of the 
FSM F is limited by integer B, for example. In this case, all 
the states corresponding to configurations (s, v) with the 
numbers that are greater then B are marked by a special state 
DNC (don’t care state). Two ways are then appropriate for 
FSM F testing. 

a) Transitions with DNC states are deleted from F and F is 
tested as a partial FSM [3]. 

b) FSM F is tested as completely specified FSM [4] and 
then the test suit is “cleaned” by deleting all suffixes of test 
sequences that lead to the DNC state. However, the fault 
coverage of such a test suite is still unknown. 

As an EFSM model is rather complex, a suitable computer 
EFSM representation can be of a big help when unfolding and 
deriving tests automatically.    

 

III.  EFSM COMPUTER REPRESENTATION  

 Сomputer representation of the EFSM A uses the following 
items kept in the PC memory: a number of states of A, an 
array of parameterized inputs, an array of parameterized 
outputs, an array of context variables, an array of functions op 
and up, an array of integers that are used in functions op and 
up, an array of predicates, and an array of transitions. We 
define a set of structures in the C language for the computer 
representation of an EFSM. 

Structure input is used for parameterized (or not 
parameterized) input representation. 

struct input 
{  
char *input_name; 
int par_quantity;  
char **parameters_names; 
float *parameters_values;   
};    
The field input_name of the structure input captures initial 

input name while the par_quantity field is a number of input 
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parameters. The parameters_names array saves initial 
parameter names and the parameters_values array is used for 
an assignment of the input parameters. 

Structure output is similar to input structure and is used for 
parameterized (or not parameterized) output representation. 

struct output 
{  
char *output_name; 
int par_quantity;  
char **parameters_names; 
float *parameters_values;   
};    
The field output_name of the structure output captures 

initial output name; the par_quantity field is a number of 
output parameters. The parameters_names array is also used 
for initial parameters names and the parameters_values array 
keeps an assignment of the output parameters. 

We use structure variable for context variable 
representation. 

struct variable  
{ 
char *variable_name; 
float value; 
}; 
The field variable_name of the structure variable 

corresponds to initial name of the variable while value of the 
context variable is stored in the value field. 

When simulating behavior of the EFSM A we use integers 
instead of strings. In other words, we hash inputs, outputs, 
variables, functions and predicates and use corresponding 
integer identifiers when deriving tests. We note that such a 
hashing significantly accelerates the simulation process. 
Reverse Polish Notation [5] is utilized for faster translation of 
EFSM predicates and functions into computer representation. 
That is the reason why the structure function has two fields. 

struct function 
{ 
int *rpr; 
int rpr_size; 
};  
The Reverse Polish Notation that corresponds to the 

function is stored in the rpr array of rpr_size items. The items 
of the rpr array are identifiers of parameterized inputs or 
context variables. Arithmetic operators are also hashed and 
stored in the rpr array. We use special rpr item ‘–1’ to 
separate operators and operands of the Reverse Polish 
Notation. 

When constructing the Reverse Polish Notation for the 
predicate P we hash comparison operators and divide an 
arithmetic expression into two parts: the arithmetic expression 
that is in the left hand side of the comparison operator is the 
‘ left notation’. In the right hand side of the comparison 
operator is the ‘right notation’. Correspondingly, we consider 
only predicates where left hand and right hand side 
expressions are separated with one of the following 
comparison operators {<, >, >=, <=, ==, !=}. Therefore, 
structure predicate has four fields.   

struct predicate 
{ 
int *rpr_left; 
int rpr_left_size; 
int *rpr_right; 
int rpr_right_size; 
int sign_op; 
}; 
The rpr_left array of rpr_left_size items corresponds to the 

‘left notation’ while rpr_left array of rpr_left_size items are 
used for the ‘right notation’. The sign_op field corresponds to 
the comparison operator identifier. 

As the EFSM is a pair (S, T) of a set of states S and a set of 
transitions T, it is necessary to save all the transitions of the set 
T. Correspondingly we define a structure transition for t ∈ T. 

struct transition 
{ 
int s; 
int s_prime; 
input i; 
output o; 
int *predicate_numbers; 
int *function_numbers; 
}; 
Integers s and s_prime are initial and final states of the 

transition t = (s, x, P, op, y, up, s )́ while x and y are 
parameterized input and output of the transition. Items of the 
predicate_numbers array and function_numbers array are 
identifiers of predicates and functions which guard the 
transition t. 

Therefore, structure EFSM consists of the following data 
items. 

struct EFSM 
{ 
int s_number; 
input *input_array; 
int input_array_size; 
output *output_array; 
int output_array_size; 
variable *variable_array; 
int variable_array_size; 
int *integers_array; 
int integers_array_size; 
function *functions_array; 
int function_array_size;  
predicate *predicates_array; 
int predicates_array_size; 
transition *transitions_array; 
int transitions_array_size; 
}; 
s_number is the number of states of the EFSM;. 
input_array (of input_array_size items) and output_array 

(of output_array_size items) form the sets of parameterized 
inputs and outputs; 

 variable_array stores variable_array_size context 
variables.  

If predicates or functions use constant integers then these 
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integers are saved in the integers_array. The functions and the 
predicates are stored in the functions_array and the 
predicates_array. The set T of transitions is listed in the 
transitions_array. 

 

IV.  EXPERIMENTAL RESULTS 

We experimented with several protocol EFSMs. The 
preliminary experimental results show that for several protocol 
EFSM the unfolding procedure at an appropriate abstraction 
level can be performed without limiting the maximal number 
of states of an equivalent FSM. Those protocols are POP3, 
SMTP, and TIME [6]. The reason is that the number of states 
of the corresponding protocol EFSMs (at an appropriate 
abstraction level) is up to four and the number of context 
variables is less than three while the number of transitions 
does not exceed 16. The equivalent FSM for POP3 EFSM has 
six states and 106 transitions while the equivalent FSM for 
SMTP EFSM has four states and 36 transitions. The TIME 
EFSM is rather small that is why the number of TIME FSM 
transitions is 12. More detailed information about performed 
experiments is presented in Table 1. 

 
  

Pro-
tocol 

Num-
ber of  
EFSM 
states 

Number 
of EFSM 
context 
variables 

Number 
of 
EFSM 
transi-
tions 

Number 
of 
equivalent 
FSM 
states 

Number  
of FSM  
transi-
tions 

POP
3 

4 2 16 6 106 

SM
TP 

2 1 8 4 36 

TIM
E 

2 0 2 2 12 

Table 1. Preliminary experimental results 
 

V. CONCLUSIONS 

In this paper, we described the EFSM computer 
representation that is of a big help when automatically 
unfolding a given EFSM to an equivalent FSM. Such 
unfolding needs the explicit enumeration of all different 
configurations reachable from the initial EFSM state. As the 
enumeration can lead to the state explosion problem, the 
maximal number of an equivalent FSM is usually limited. We 
experimented with several protocol EFSMs and our 
preliminary experimental results show that the unfolding 
procedure (at an appropriate description level) can sometimes 
be performed without limiting the maximal number of states 
of an equivalent FSM. More experiments with different 
protocol EFSMs are needed in order to estimate the 
effectiveness of the developed software. 
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