
 1

Abstract—Formal model based test derivation is now widely

used in software testing. One of the formal models which is very
close to software implementations is the model of an Extended
Finite State machine (EFSM). Compared with an FSM the EFSM
has predicates for condition representation and context variables.
However, when deriving tests for an EFSM very complex
reachability and distinguishability problem should be solved. For
this reason, when deriving tests from an EFSM a number of FSM
slices are used. In this paper, we discuss how to derive a test
using an FSM slice with limited number of states and how to
represent data in the PC memory for fast generation of such slice.
Preliminary experimental results with protocol EFSMs are
provided.

Index Terms—Software testing, EFSM, computer
representation

I. INTRODUCTION

HE complexity of digital systems and devices increases
quickly and software is a usual part of almost each system

or device. Thus, ad hoc testing of software implementations
now is insufficient and a number of methods for formal model
based software testing are proposed and widely used, since
model based testing provides tests with the guaranteed fault
coverage.

One of formal models which is very close to software
implementations is the model of an Extended Finite State
machine (EFSM). The EFSM model extends the classic FSM
model with input and output parameters, context variables,
operations and predicates defined over context variables and
input parameters. If specification domains of input parameters
and context variables are finite then an EFSM can be unfolded
to an equivalent FSM (FSM slice) by simulating its behavior
with respect to all possible values of context variables and
input vectors [1]. A test suite then is derived from the
corresponding equivalent FSM. However, the number of states
of such corresponding FSM grows exponentially, and thus, it
is necessary to limit the maximal number of states and in this
case, the corresponding FSM becomes nondeterministic. In
this paper, we show how tests can be derived for such
nondeterministic FSM slice. In order to derive tests effectively
an efficient computer representation of the complex EFSM
model is proposed in this paper.

The structure of the paper is as follows. Section II contains
preliminaries and a discussion how tests for an EFSM can be

1 This work is partly supported by FCP grant № 02.514.12.402.

derived when the number of a corresponding FSM is limited.
Section III is devoted to EFSM computer representation.
Section IV discusses preliminary experimental results with
protocol EFSMs while Section V concludes the paper.

II. PRELIMINARIES

The EFSM Model
An extended finite state machine [2] A is a pair (S, T) of a set
of states S and a set of transitions T between states from S,
such that each transition t ∈ T is a tuple (s, x, P, op, y, up, s)́,
where:

s, s∈́ S are the initial and final states of a transition;
x ∈ X is an input, and Dinp-x is the set of possible input

vectors, associated with the input x, i.e., each component of an
input vector is the value of a corresponding input parameter
associated with x;

y ∈ Y is output, where Y is the set of outputs, and Dout-y is
the set of possible output vectors, associated with the output
y, i.e. each component of an output vector corresponds to an
output parameter associated with y;

P, op, and up are functions, defined over input parameters,
and context variables, namely:

P: Dinp-x × DV → {True, False} is a predicate, where DV is a
set of context vectors v;

op: Dinp-x × DV → Dout-y is an output parameter update
function;

up: Dinp-x × DV → DV is a context update function.
As in [2], we use the following definitions.
Given an input x and a vector ρρρρ ∈ Dinp-x, the pair (x, ρρρρ) and

vector from Dinp-x, is called a parameterized input. A sequence
of parameterized inputs is called a parameterized input
sequence. A context vector v ∈ DV is called a context of M. A
configuration of M is a pair (s, v). Given a parameterized input
sequence of an EFSM we can calculate the corresponding
parameterized output sequence by simulating the behavior of
the EFSM under the input sequence starting from the initial
state and initial values of the context variables.

As an example, consider the EFSM E in Figure 2 that
corresponds to the C function f presented in Figure 1.

On EFSM-based Test Derivation Strategies 1

Aleksandr Nikitin, Natalia Kushik

T

 2

int f(int *a, int size_a)
{
int i, m;
i = 0;
m = a[0];
while(i < size_a)
{
if(m < a[i]) m = a[i];
i++;
}
return m;
}
Figure 1. The function f

Function f in Figure 1 returns the maximal integer in the

array a where size_a is the cardinality of a. To obtain an
EFSM that corresponds to the given C function we first
determine the set S of states. Let S be the set S = {s1, s2, s3}
where s1, s2, s3 are three different points in the C function. The
state s1 corresponds to the beginning of the function f; the state
s2 represents the state of the program before comparing i with
size_a; the program moves to the state s3 if i is less than
size_a. The set X of input consists of the array pointer *a and
of the cardinality size_a of a. Input *a is a parameterized
input, here index (item number) is a parameter. Output y ∈ Y
is not parameterized; it corresponds to the variable m that is
returned by the function f. We also add special input (and
output) ‘NULL’ to specify cases when program accepts (or
returns) no external data. The set P of predicates consists of P1
and P2: P1 is true if i is less than size_a while P2 is true if m is
less than a[i]. The variable i is the context variable. The
corresponding EFSM E is presented in Figure 2.

Figure 2. The EFSM E

In this paper, we consider deterministic and complete

EFSMs, i.e., for each parameterized input sequence there
exists a single parameterized output sequence that is produced

by the EFSM for the given input sequence.

Unfolding a given EFSM to an equivalent FSM
Given an EFSM A, in order to obtain an equivalent FSM F

we proceed as follows. Given a state s of EFSM A, a context
vector v, an input x and vector ρρρρ of input parameters, we
derive the transition from configuration (s, v) under input (x,
ρρρρ) in the corresponding FSM F. We first determine the
outgoing transition (s, x, P, op, y, up, ś) from state s where the
predicate P is true for input vector ρρρρ and context vector v,
update the context vector to the vector v´ according to the
assignment up of this transition, determine the parameterized
output yωωωω and add the transition (sv, xρρρρ, yωωωω, ś v´) to the set of
transitions of the FSM. The obtained FSM has the same
number of states as the number of different configurations (s,
v) of the EFSM F that are reachable from the initial state.

Such unfolding can help to detect transfer, predicate, and
assignment faults of the given EFSM A. However, it is known
that the simulation usually leads to a state explosion problem.
That is the reason why the maximal number of states of the
FSM F is limited by integer B, for example. In this case, all
the states corresponding to configurations (s, v) with the
numbers that are greater then B are marked by a special state
DNC (don’t care state). Two ways are then appropriate for
FSM F testing.

a) Transitions with DNC states are deleted from F and F is
tested as a partial FSM [3].

b) FSM F is tested as completely specified FSM [4] and
then the test suit is “cleaned” by deleting all suffixes of test
sequences that lead to the DNC state. However, the fault
coverage of such a test suite is still unknown.

As an EFSM model is rather complex, a suitable computer
EFSM representation can be of a big help when unfolding and
deriving tests automatically.

III. EFSM COMPUTER REPRESENTATION

 Сomputer representation of the EFSM A uses the following
items kept in the PC memory: a number of states of A, an
array of parameterized inputs, an array of parameterized
outputs, an array of context variables, an array of functions op
and up, an array of integers that are used in functions op and
up, an array of predicates, and an array of transitions. We
define a set of structures in the C language for the computer
representation of an EFSM.

Structure input is used for parameterized (or not
parameterized) input representation.

struct input
{
char *input_name;
int par_quantity;
char **parameters_names;
float *parameters_values;
};
The field input_name of the structure input captures initial

input name while the par_quantity field is a number of input

 3

parameters. The parameters_names array saves initial
parameter names and the parameters_values array is used for
an assignment of the input parameters.

Structure output is similar to input structure and is used for
parameterized (or not parameterized) output representation.

struct output
{
char *output_name;
int par_quantity;
char **parameters_names;
float *parameters_values;
};
The field output_name of the structure output captures

initial output name; the par_quantity field is a number of
output parameters. The parameters_names array is also used
for initial parameters names and the parameters_values array
keeps an assignment of the output parameters.

We use structure variable for context variable
representation.

struct variable
{
char *variable_name;
float value;
};
The field variable_name of the structure variable

corresponds to initial name of the variable while value of the
context variable is stored in the value field.

When simulating behavior of the EFSM A we use integers
instead of strings. In other words, we hash inputs, outputs,
variables, functions and predicates and use corresponding
integer identifiers when deriving tests. We note that such a
hashing significantly accelerates the simulation process.
Reverse Polish Notation [5] is utilized for faster translation of
EFSM predicates and functions into computer representation.
That is the reason why the structure function has two fields.

struct function
{
int *rpr;
int rpr_size;
};
The Reverse Polish Notation that corresponds to the

function is stored in the rpr array of rpr_size items. The items
of the rpr array are identifiers of parameterized inputs or
context variables. Arithmetic operators are also hashed and
stored in the rpr array. We use special rpr item ‘–1’ to
separate operators and operands of the Reverse Polish
Notation.

When constructing the Reverse Polish Notation for the
predicate P we hash comparison operators and divide an
arithmetic expression into two parts: the arithmetic expression
that is in the left hand side of the comparison operator is the
‘ left notation’. In the right hand side of the comparison
operator is the ‘right notation’. Correspondingly, we consider
only predicates where left hand and right hand side
expressions are separated with one of the following
comparison operators {<, >, >=, <=, ==, !=}. Therefore,
structure predicate has four fields.

struct predicate
{
int *rpr_left;
int rpr_left_size;
int *rpr_right;
int rpr_right_size;
int sign_op;
};
The rpr_left array of rpr_left_size items corresponds to the

‘left notation’ while rpr_left array of rpr_left_size items are
used for the ‘right notation’. The sign_op field corresponds to
the comparison operator identifier.

As the EFSM is a pair (S, T) of a set of states S and a set of
transitions T, it is necessary to save all the transitions of the set
T. Correspondingly we define a structure transition for t ∈ T.

struct transition
{
int s;
int s_prime;
input i;
output o;
int *predicate_numbers;
int *function_numbers;
};
Integers s and s_prime are initial and final states of the

transition t = (s, x, P, op, y, up, s)́ while x and y are
parameterized input and output of the transition. Items of the
predicate_numbers array and function_numbers array are
identifiers of predicates and functions which guard the
transition t.

Therefore, structure EFSM consists of the following data
items.

struct EFSM
{
int s_number;
input *input_array;
int input_array_size;
output *output_array;
int output_array_size;
variable *variable_array;
int variable_array_size;
int *integers_array;
int integers_array_size;
function *functions_array;
int function_array_size;
predicate *predicates_array;
int predicates_array_size;
transition *transitions_array;
int transitions_array_size;
};
s_number is the number of states of the EFSM;.
input_array (of input_array_size items) and output_array

(of output_array_size items) form the sets of parameterized
inputs and outputs;

 variable_array stores variable_array_size context
variables.

If predicates or functions use constant integers then these

 4

integers are saved in the integers_array. The functions and the
predicates are stored in the functions_array and the
predicates_array. The set T of transitions is listed in the
transitions_array.

IV. EXPERIMENTAL RESULTS

We experimented with several protocol EFSMs. The
preliminary experimental results show that for several protocol
EFSM the unfolding procedure at an appropriate abstraction
level can be performed without limiting the maximal number
of states of an equivalent FSM. Those protocols are POP3,
SMTP, and TIME [6]. The reason is that the number of states
of the corresponding protocol EFSMs (at an appropriate
abstraction level) is up to four and the number of context
variables is less than three while the number of transitions
does not exceed 16. The equivalent FSM for POP3 EFSM has
six states and 106 transitions while the equivalent FSM for
SMTP EFSM has four states and 36 transitions. The TIME
EFSM is rather small that is why the number of TIME FSM
transitions is 12. More detailed information about performed
experiments is presented in Table 1.

Pro-
tocol

Num-
ber of
EFSM
states

Number
of EFSM
context
variables

Number
of
EFSM
transi-
tions

Number
of
equivalent
FSM
states

Number
of FSM
transi-
tions

POP
3

4 2 16 6 106

SM
TP

2 1 8 4 36

TIM
E

2 0 2 2 12

Table 1. Preliminary experimental results

V. CONCLUSIONS

In this paper, we described the EFSM computer
representation that is of a big help when automatically
unfolding a given EFSM to an equivalent FSM. Such
unfolding needs the explicit enumeration of all different
configurations reachable from the initial EFSM state. As the
enumeration can lead to the state explosion problem, the
maximal number of an equivalent FSM is usually limited. We
experimented with several protocol EFSMs and our
preliminary experimental results show that the unfolding
procedure (at an appropriate description level) can sometimes
be performed without limiting the maximal number of states
of an equivalent FSM. More experiments with different
protocol EFSMs are needed in order to estimate the
effectiveness of the developed software.

REFERENCES
[1] A. Faro and A. Petrenko. Sequence Generation from EFSMs for

Protocol Testing. In Proc. of COMNET’90, Budapest, 1990.
[2] A. Petrenko, S. Boroday, R. Groz. Confirming configurations in EFSM

testing. IEEE Trans. on Software Engineering, 2004, 30(1), pp. 29-42.
[3] A. Petrenko and N. Yevtushenko. Testing from Partial Deterministic

FSM Specifications. IEEE Trans. on Computers, 2005.
[4] R. Dorofeeva, K. El-Fakih, S. Maag, A.R. Cavalli, N.Yevtushenko.

Experimental evaluation of FSM-based testing methods. In: Proc. of the
IEEE International Conference on Software Engineering and Formal
Methods (SEFM05). Germany, pp. 23-32.

[5] V.A. Sibirjakova. Reverse Polish Notation: manual. Tomsk State
University Publishers, 1997, 27 p.

[6] N.V. Spitsyna, A.V. Shabaldin. Web-programming: manual. Tomsk
State University Publishers, 2002, 50 p.

