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This paper presents an extendable architecture for a discrete-

event simulation runtime (DESR).  The architecture is based on a 

set of logic blocks. Each block encapsulates a part of the DESR 

functionality and provides an interface to that functionality for 

other blocks. Differences in requirements that are imposed by 

different simulation problems are encapsulated in distinct logic 

blocks. Interface of each block is formally specified and there is a 

possibility of its automated check. Instances of the logic blocks 

are combined to get DESR for a particular simulation problem. 

Therefore, there is no need either in performance trade-offs or in 

a custom development of the DESR. 

 
General Terms: Discrete-Event Simulation, Simulation 

Runtime, Reuse, Modular Design 

 

I. INTRODUCTION 

HIS paper is devoted to the development of the 

architecture for a DESR consisting of a set of logical 

blocks. The particular set of blocks, their interfaces and 

functionality give ability to build the runtime taking into 

account the requirements of a custom simulation task. 

The Computer Systems Laboratory
1
 (CSL) conducts 

multiple diverse research projects related to the simulation of 

distributed systems. The terms of such problems include the 

modeling of on-board systems (aviation, naval, automotive) 

computer networks and instruction set of processors. All these 

problems are focused on modeling the functionality of a 

computer system (data processing) and its performance as well 

as used apparatus – discrete-event simulation. 

In CSL, such problems have been solving since 1982 and 

with increasing number of projects and directions it was 

decided to create a unified DESR [1]. It is based on a single 

approach to the computer systems simulation and uses a 

specialized language to describe simulation models. 

However it became clear that this approach is not entirely 

suitable for the development of high-tech research projects. 

New challenges bring with them the need for simulation in a 

variety of detail levels. New requirements for scalability, 
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performance and response time appear. General purpose 

solution is a compromise between expressive power and 

efficiency. Another problem is that it requires a tremendous 

effort to upgrade and maintain it in the grease condition in the 

future development. 

As a result incompatible changes have been made in the 

unified DESR for each major project and currently there are 

several well-used variants of the same product. 

This paper proposes the other way - to develop the 

architecture of the DESR as a collection of logical blocks. 

Each of these blocks encapsulates the functionality of the 

DESR and provides an interface to other units to use this 

functionality. A set of blocks has been designed so that the 

differences in the requirements for the DESR made by 

different tasks were encapsulated in separate blocks, retaining 

the overall structure of the DESR. The option to compose a 

DESR from needed copies of the different blocks gives ability 

to create a DESR configured to solve a custom simulation task 

with no need to compromise in terms of system performance 

and without wasting the developers’ effort to create and 

support a new DESR. 

This paper is based on a comparative analysis of different 

editions of the runtime DYANA used in several projects: 1) 

functional simulation of on-board marine systems [3], 2) 

hardware-in-the-loop simulation of on-board aircraft systems 

[4], 3) simulation of performance of neuroprocessor 

instruction set [5] and 4) on-board automotive information 

system simulation. Several DESR of well-known simulation 

systems have been also reviewed: AutoMod, SLX, Extend, 

SIMAN V, ProModel, GPSS/H. 

Typically, the runtime consists of a set of modules [6],[7]. 

However, decomposition of a runtime into blocks based on the 

reduction of overhead costs for retargeting to a certain task 

hasn’t been addressed yet. This problem has two important 

features: 

1. The blocks must encapsulate functionality which is likely 

to change when adapting the runtime for a new simulation 

task; 

2. Modification mechanisms for the runtime structure and 

the particular implementation of the runtime blocks should be 

researched; 

3. The requirements for block implementations and 

monitoring mechanisms to ensure its compliance should be 

specified. The requirements may concern the block interface 

(has methods with a specific signature, is written in the same 

language, is connected as an object file, etc.), and its behavior. 

Formalization and enforcement of requirements 

to modular discrete-event simulation runtime 

E. V. Chemeritskiy, K. O. Savenkov 

T 

mailto:tyz@lvk.cs.msu.su
mailto:savenkov@cs.msu.su


 

 

2 

The research results into a set of blocks encapsulating the 

differences of the examined DESR. On the basis of the 

proposed blocks a mathematical model of the DESR has been 

constructed. The paper describes in detail the functionality of 

each of the proposed block and the formal specifications of the 

interfaces of these blocks. Some mechanisms for its automated 

check have been proposed according to the analysis of 

designed specifications.  

 

II. COMPONENTS OF THE RUNTIME 

A generalized DESR scheme is proposed on the basis of a 

comparative analysis of different variants of DYANA runtime 

[2]-[5] and several well-known simulation systems: AutoMod, 

SLX, Extend, SIMAN V, ProModel, GPSS/H [8],[9]. 

The terms of this paper are borrowed from [10] with some 

generalization. The basic concepts of generalized DESR are 

event (a signal notifies DESR on the changing of model state), 

logical object (LO) (entity that is able to schedule events) and 

resource (provide LO with some services). Resources are 

presented by model time, cells of a memory (variables), 

clipboard information, semaphores, and so on. LO may delay 

event arrival until some condition depending on a state of the 

model resources set is satisfied. This condition is called a 

delay condition. As a result of the event arrival DESR can 

produce a number of actions called the event handling. 

All event transactions take place in the handling blocks. 

Each block is a container for events generated by LO. Any 

handling block can be provided with an individual scheduler 

to properly rank the elements of the block. Runtime 

environment may contain several types of handling blocks: 

1. Current event block (CEB) contains ready to be handled 

events. 

2. Future event block (FEB) stores events with a delay 

condition depending only on the model time. 

3. Delayed event block (DEB) contains events with complex 

delay condition depending on set of resources. There are two 

general approaches to condition check: polled waiting and 

related waiting. Respectively, there are two types of DEB 

according to these approaches: related event block (REB) and 

polled event block (PEB). 

The work of DESR blocks is coordinated by the dispatcher 

throughout the model execution. The result message sequence 

is written to output trace. 

More information about logical blocks composing the 

runtime environment and their functionality within the DESR 

is available in [11]. 

 

III. STATIC SEMANTICS 

A. Static structure of the runtime 

Runtime environment  connects a set of resources  and 

logical objects  of the model with the dispatcher . 

 

 (1) 

It is important to note that the resources and the logical objects 

are binded to the only dispatcher throughout the model 

execution. 

B. Resource 

The set of all resources is denoted by . For each resource 

 a set of variables (memory cells)  and event 

container  are attached. The variables from the set  can take 

values from the set . 

There are two types of resources: direct access resources 

 and indirect access resources . Direct access 

resource keeps track of the values of related variables using 

the map . In this case the resource stores only a 

“local copy” of the original model data. Over a set of indirect 

access resources a map  to the set of 

dispatchers is defined. This mapping allows one to distinguish 

between attached and free model resources. 

 

 (2) 

 (3) 

 (4) 

C. Message and trace 

The output trace  is presented by the message sequence. 

The message alphabet is denoted by . 

 

 (5) 

D. Event 

Suppose there exists a set of all possible events . Each 

event has a trace message  and the type of event . There are 

several event types in accordance with type of handling blocks 

intended to store this event . 

There are a number of maps defined over event set . The 

logical object arisen the particular event could be found by the 

mapping . Suppose that there is a set of event 

attributes of all kinds . Then the mapping  defines 

an attribute set for each particular event. 

Suppose there is a set of predicate symbols  defined 

over a set of resources  and depending on the values  of 

attached variables . So the delay condition of event  

could be presented as a formula of propositional logic 

(quantifier-free first-order logic)  over the set of 

predicates . 

The map changing the states set of resources  and the 

states set of logical objects  associated with the event  

is referenced as the modification . There 

are only several ways to change model state: 

1. To attach a new logical object  to the dispatcher , 

2. To attach a new resource  to the dispatcher , 

3. To change resource variables value , 

4. To change logical object activity limit value . 

 

 (6) 

 (7) 

Event type imposes restrictions on the delay condition. The 

delay condition of events of type "CEB" is always true. Events 

of type "FEB" essentially depends only on the model time and 
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types "PEB" and "REB" by contrast are independent of model 

time. 

The notation  denotes a set of significant variables of 

 and  denotes a resource containing the model 

time. Then, the following expressions are correct 
2
: 

 

 (8) 

 (9) 

 (10) 

The delay condition of each "FEB" event is true at a single 

point on the axis of time. 

 

 (11) 

Introduce a special operator  to determine its 

value. 

 

 (12) 

There is also a dependency between the type of event and 

its attribute set. The events of one type have the same attribute 

set. Attribute set of the event with a type different from "CEB" 

includes all of its attributes. 

 

 (13) 

 (14) 

E. Logical object 

The logical object  uses the event generator  to 

schedule events. For each generator  its current state 

 and the step function  are defined. 

Newly scheduled events are stored in a local event queue 

 
3
 with size limited by the capacity . In 

addition to capacity the behavior of the logical object is 

controlled by the activity level  and the activity limit 

. 

Over the set of logical objects the mapping  

to the dispatcher set is defined. This mapping allows one to 

distinguish between attached and free logical objects. 

 

 (15) 

 (16) 

 (17) 

Generator  constructs an event sequence  using 

the recurrence relation . Generator 

schedules events in order of nondecreasing model time. 

 

 (18) 

The generator has ability to synchronize its own time 

(presented explicitly or implicitly, through the scheduled 

events) with the model time. In this case the step function 

returns an empty symbol as the event . If 

 
2 Here and henceforth the operator "." will be used to denote the tuple 

element. 
3 We assume that the event queue  has several predefined operations: 

1.  – returns number of events in the queue, 

2.  – adds event to the back of the queue, 

 – takes event from the head of queue. 

the generator has planned all the events then step function 

returns an empty symbol as the state . 

F. Handling block 

Handling block consists of one or several event containers 

and a scheduler . The scheduler ranks 

elements of attached containers and choose a certain event 

range. 

There are several types of handling blocks : “CEB", 

"FEB", "PEB" and "REB”. Each block type has its own 

distinctive features. 

Blocks typed as "CEB", "FEB" and "REB" have a more 

complex structure than a block of type "PEB". Two containers 

are attached to these blocks. Block "FEB" also contains a 

model clock (defining the event horizon) and the simulation 

threshold . "REB" block has a resource container  

intended to store resources changed on the current iteration of 

event handle loop. 

 

 (19) 

 (20) 

 (21) 

 (22) 

The event scheduler gives as the result an ordered set of 

events with the delay condition met. The results of the 

scheduler of "CEB" and "FEB" blocks includes all such events 

whereas the schedulers of the remaining block types allowed 

not giving all such events. 

 

 

 (23) 

 (24) 

 (25) 

The delay condition of event moved to "FEB" block 

essentially depends on the model time, and is satisfied at only 

point on the time axis. Scheduler of this block gives a set of 

events with a minimum time: 

 

 (26) 

In addition time of each scheduled event does not exceed 

the simulation threshold : 

 

 (27) 

G. Dispatcher 

Output trace , handling blocks set  and direct access 

resource container  are attached to the dispatcher . 

 

 (28) 

Handling block set includes a single block of “FEB”, and 

can also include no more than one block of every other type. 

Thus the assertion 

 

 (29) 
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IV. OPERATIONAL SEMANTICS 

In this chapter the concept of runtime environment and rules 

of its changing are introduced. Algorithms for the initialization 

of the runtime and model running are described. 

A. Resource state 

For each resource  the state  is determined as a 

tuple consisting of variable value  
4
 and a set of events 

from attached container  
5
. 

 

 (30) 

B. Logical object state 

The state  of the logical object  is 

defined as a pair of corresponding event generator  and the 

event set of events contained in the attached to the logical 

object container . 

 

 (31) 

C. Handling block state 

State  of handling block set (29) is defined as a collection 

of the contents of containers attached to them. 

 

 (32) 

 (33) 

 (34) 

 (35) 

D. Dispatcher state 

Dispatcher state  is defined as a collection of the contents 

of trace , attached handling blocks state  and the content of 

attached resource container. 

 

 (36) 

E. Runtime environment state 

Runtime environment condition  is characterized by the 

state of resources  and logical object  of the model 

and the state of the dispatcher . 

 

 (37) 

F. The rules of the runtime state changing 

Rules (38)-(40) are intended to add a direct or indirect 

access resource or logical object to the dispatcher. 

Rule (41) describes the changes in the state of the runtime 

after the value of resource variables changed. 

Rule (42) defines the run of the model. 

 

 (38) 

 (39) 

 (40) 

 
4 To indicate the values of the object  the operator  will be used.  
5 Under the value of the container the set of elements contained therein is 

infered. 

 (41) 

 (42) 

G. Searching events to transit into the handling blocks 

; 

The algorithm checks the readiness of the logical object to 

schedule events and moves events created by them into the 

handling blocks attached to the dispatcher. If the number of 

such events in the handling blocks has reached the limit, some 

of them are buffered into the local queue. 

 

#Used while event handling – decrement activity level 

; 

IF (  ) 

 #There are no more events produced by  

 IF (  ) 

  #Local event queue is empty 

  WHILE (  ) DO 

   #Event generator can schedule events and local 

queue is not full 

   #Invoke event generator 

   ; 

   IF (  ) 

    #Generator cannot schedule events yet 

    BREAK; 

   FI 

   IF (  ) 

    #Activity level is less than activity limit 

    #Add event to handling block 

    ; 

    #Increment activity level 

    ; 

   ELSE 

    #Handling block contain a limit event number 

    #Add event to local event queue 

    ; 

   FI 

  OD 

 ELSE 

  #Local event queue is not empty 

  #Add a number of events less or equal to activity limit 

  ; 

  WHILE (  ) DO 

   #Transmit event from local queue to handling 

blocks 

   ; 

   ; 

  OD 

 FI 

FI 

H. Addition of event to the handling blocks 

; 

The event is placed in a handling block in accordance with 

its type. 
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#Load an event to handling block of the same type 

IF (  ) 

 ; 

ELSEIF (  ) 

 ; 

ELSEIF (  ) 

 ; 

#Event type is “FEB” – other choices are sort out 

ELSEIF (  ) 

 #Event time is equal to current model time 

 ; 

ELSEIF (  ) 

 #Event time is greater than simulation threshold 

 ; 

ELSE 

 ; 

FI 

I. Event handle cycle 

; 

Algorithm iteratively retrieves ready events from handling 

blocks, sorts them and calls for event handling. Model time 

does not change during this process. 

 

WHILE ( TRUE ) DO 

 #Search for direct access resources with changed variable 

value 

  

  IF (  ) 

   #Add resource to container of changed resource 

   ; 

   #Refresh value 

   ; 

  FI 

 #Compose the contents of REB major event container 

 #Add events with satisfied delay conditions 

  

 #Add the rest to resource containers 

  

   

   ; 

 #Leave in auxiliary REB container only events with 

satisfied delay condition 

 ; 

 #Add events depending on changed resources into the 

REB major event container 

  

  ; 

 #Add events independent on resource state into CEB 

auxiliary container 

 ; 

 #Compose the contents of CEB major event container 

 ; 

 ; 

 IF ( |  ) 

  #No event was chosen 

  BREAK: 

 FI 

 #Handle chosen events 

  

  ; 

OD 

; 

J. Event handling 

; 

Handled event is excluded from the handling block. Then 

the model state changed in appropriate to this event way and 

the information recorded in the trace. The dispatcher also 

searches for the events created by the same logical object to 

transfer into attached handling blocks. 

 

IF (  ) 

 #Event does not depend on resource state 

 ; 

ELSEIF (  ) 

 ; 

ELSEIF (  ) 

 #Event delay condition was always satisfied 

 ; 

ELSE 

 #Event was added into resource container 

  

  ; 

FI 

#Change model state according to event 

; 

Add message to the output trace ; 

; 

K. Model time advancing 

; 

Selected by the scheduler of “FEB” block, events are 

transferred from the major container to the additional one. 

During this model time is changed to the arrival time of any of 

the selected events (each of these events has the same arrival 

time). 

 

#Move event scheduled to current model time to auxiliary 

container FEB 

; 

; 

Set a new model time 

; 

V. REQUIREMENTS TO THE RUNTIME BLOCKS 

Mathematical model allows identifying interfaces of blocks 

that make up the runtime. Thus a sufficient condition for the 

possibility of substituting a new runtime is the compliance of 

its interfaces with the requirements. 

There are several classes of requirements: 

1. PRED – specifies pre-condition, 
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2. POST – specifies post-condition, 

3. RET – determines the method return value, 

4. EQ – specifies equivalence to the described algorithm. 

Requirements for the interfaces of the blocks depend on its 

type, and the configuration of the runtime as a whole. All 

specifications are listed in table 1. 

 

VI. OBSERVATIONS ON THE IMPLEMENTATION 

Configurable runtime environment is developed as a 

compile time library written in C++. The flexibility of the 

runtime components is achieved through the use of template 

classes. Thus each of these blocks is represented as a single 

class. The new runtime environment with the necessary 

properties can be created on the basis of the class layout. 

The signature of class interfaces are variable and depend on 

the configuration of the runtime. Nevertheless, they can be 

checked at compile time. As appropriate tool the library Boost 

Concept Check Library (BCCL) can be used [12]. This library 

allows formal describing of the requirements for abstract data 

types (concepts) used in templates and verify their compliance 

with these requirements. 

The most difficult requirements to verify are the ones to 

interface of the handling blocks. Depending on the 

configuration of the runtime their functionality can have 

significant differences. But the number of fundamentally 

different configurations of the handling block is low. Thus 

partially specifying a template of dispatcher class and using 

BCCL can impose restrictions on the interfaces of the 

handling blocks for any possible configuration. 

Semantic requirements for class interfaces can be checked 

with unit testing. Tests for the blocks can be incorporated 

directly into the library being developed so that using the 

predefined flag tests new plug-in logical block [13]. Then 

successfully tested blocks can be incorporated into the library 

itself. 

VII. CONCLUSION 

Implementation of the developing library results into ability 

to quickly build high-performance runtime environment with 

the necessary properties. This only requires new instances of 

some blocks. Thus a sufficient condition for the correctness of 

the constructed DESR is the interface compliance to 

formulated specifications which can be verified automated.  

Tested blocks can in turn be included into the library. With 

the increasing number of block instances the share of reusable 

code will increase whereas the cost of developing new runtime 

will be reduced to the layout of the ready-made blocks. 
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Table 1. Requirements to components of the runtime. 
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Configuration 
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Type Specification 
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RET  

  RET  

 
 

POST  

Related waiting 

PRED  has been invoked. 

POST  has been invoked. 

 POST  

 

 

POST  

 POST  

 RET  

T
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   POST The message has been added to the trace. 

E
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t 

 

 

 

RET  

 RET  

 RET  

 POST  

  RET  

 
 

 
RET  

  
Related waiting 

POST  

  POST  
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   POST  

   EQ To algorithm  

  Event buffer POST  

   POST  

H
an

d
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n
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 b
lo

ck
 

   POST  

   POST  

   RET . 

   POST  

 
  POST  

  POST  

   POST  

 

  POST  

 
 

Related waiting 
POST  

 

  POST Resource container has been reset. 

  POST Ready to handle events have been reset. 

  POST Unhandled events have been reset. 

D
is

p
at

ch
er

 

   EQ To rule (1) 

  Related waiting EQ To rule (2) 

  

 POST  has been invoked. 

 

Related waiting 
POST  has been invoked. 

   EQ To rule (3) 

   EQ To algorithm  

   EQ To algorithm  

   EQ To algorithm  

   EQ To rule (5) 
 


