

1

This paper presents an extendable architecture for a discrete-

event simulation runtime (DESR). The architecture is based on a

set of logic blocks. Each block encapsulates a part of the DESR

functionality and provides an interface to that functionality for

other blocks. Differences in requirements that are imposed by

different simulation problems are encapsulated in distinct logic

blocks. Interface of each block is formally specified and there is a

possibility of its automated check. Instances of the logic blocks

are combined to get DESR for a particular simulation problem.

Therefore, there is no need either in performance trade-offs or in

a custom development of the DESR.

General Terms: Discrete-Event Simulation, Simulation

Runtime, Reuse, Modular Design

I. INTRODUCTION

HIS paper is devoted to the development of the

architecture for a DESR consisting of a set of logical

blocks. The particular set of blocks, their interfaces and

functionality give ability to build the runtime taking into

account the requirements of a custom simulation task.

The Computer Systems Laboratory
1
 (CSL) conducts

multiple diverse research projects related to the simulation of

distributed systems. The terms of such problems include the

modeling of on-board systems (aviation, naval, automotive)

computer networks and instruction set of processors. All these

problems are focused on modeling the functionality of a

computer system (data processing) and its performance as well

as used apparatus – discrete-event simulation.

In CSL, such problems have been solving since 1982 and

with increasing number of projects and directions it was

decided to create a unified DESR [1]. It is based on a single

approach to the computer systems simulation and uses a

specialized language to describe simulation models.

However it became clear that this approach is not entirely

suitable for the development of high-tech research projects.

New challenges bring with them the need for simulation in a

variety of detail levels. New requirements for scalability,

Manuscript received March 22, 2010.

E. V. Chemeritskiy is with the Faculty of Computational Mathematics and
Cybernetics, Moscow State University, Moscow, (e-mail: tyz@lvk.cs.msu.su).

K. O. Savenkov is with the Faculty of Computational Mathematics and

Cybernetics, Moscow State University, Moscow ,(Phone: +7(495)939-46-71;
fax: +7(495)939-25-96; e-mail: savenkov@cs.msu.su).

1The Computer Systems Laboratory of the Faculty of Computational

Mathematics and Cybernetics of Moscow State University

performance and response time appear. General purpose

solution is a compromise between expressive power and

efficiency. Another problem is that it requires a tremendous

effort to upgrade and maintain it in the grease condition in the

future development.

As a result incompatible changes have been made in the

unified DESR for each major project and currently there are

several well-used variants of the same product.

This paper proposes the other way - to develop the

architecture of the DESR as a collection of logical blocks.

Each of these blocks encapsulates the functionality of the

DESR and provides an interface to other units to use this

functionality. A set of blocks has been designed so that the

differences in the requirements for the DESR made by

different tasks were encapsulated in separate blocks, retaining

the overall structure of the DESR. The option to compose a

DESR from needed copies of the different blocks gives ability

to create a DESR configured to solve a custom simulation task

with no need to compromise in terms of system performance

and without wasting the developers’ effort to create and

support a new DESR.

This paper is based on a comparative analysis of different

editions of the runtime DYANA used in several projects: 1)

functional simulation of on-board marine systems [3], 2)

hardware-in-the-loop simulation of on-board aircraft systems

[4], 3) simulation of performance of neuroprocessor

instruction set [5] and 4) on-board automotive information

system simulation. Several DESR of well-known simulation

systems have been also reviewed: AutoMod, SLX, Extend,

SIMAN V, ProModel, GPSS/H.

Typically, the runtime consists of a set of modules [6],[7].

However, decomposition of a runtime into blocks based on the

reduction of overhead costs for retargeting to a certain task

hasn’t been addressed yet. This problem has two important

features:

1. The blocks must encapsulate functionality which is likely

to change when adapting the runtime for a new simulation

task;

2. Modification mechanisms for the runtime structure and

the particular implementation of the runtime blocks should be

researched;

3. The requirements for block implementations and

monitoring mechanisms to ensure its compliance should be

specified. The requirements may concern the block interface

(has methods with a specific signature, is written in the same

language, is connected as an object file, etc.), and its behavior.

Formalization and enforcement of requirements

to modular discrete-event simulation runtime

E. V. Chemeritskiy, K. O. Savenkov

T

mailto:tyz@lvk.cs.msu.su
mailto:savenkov@cs.msu.su

2

The research results into a set of blocks encapsulating the

differences of the examined DESR. On the basis of the

proposed blocks a mathematical model of the DESR has been

constructed. The paper describes in detail the functionality of

each of the proposed block and the formal specifications of the

interfaces of these blocks. Some mechanisms for its automated

check have been proposed according to the analysis of

designed specifications.

II. COMPONENTS OF THE RUNTIME

A generalized DESR scheme is proposed on the basis of a

comparative analysis of different variants of DYANA runtime

[2]-[5] and several well-known simulation systems: AutoMod,

SLX, Extend, SIMAN V, ProModel, GPSS/H [8],[9].

The terms of this paper are borrowed from [10] with some

generalization. The basic concepts of generalized DESR are

event (a signal notifies DESR on the changing of model state),

logical object (LO) (entity that is able to schedule events) and

resource (provide LO with some services). Resources are

presented by model time, cells of a memory (variables),

clipboard information, semaphores, and so on. LO may delay

event arrival until some condition depending on a state of the

model resources set is satisfied. This condition is called a

delay condition. As a result of the event arrival DESR can

produce a number of actions called the event handling.

All event transactions take place in the handling blocks.

Each block is a container for events generated by LO. Any

handling block can be provided with an individual scheduler

to properly rank the elements of the block. Runtime

environment may contain several types of handling blocks:

1. Current event block (CEB) contains ready to be handled

events.

2. Future event block (FEB) stores events with a delay

condition depending only on the model time.

3. Delayed event block (DEB) contains events with complex

delay condition depending on set of resources. There are two

general approaches to condition check: polled waiting and

related waiting. Respectively, there are two types of DEB

according to these approaches: related event block (REB) and

polled event block (PEB).

The work of DESR blocks is coordinated by the dispatcher

throughout the model execution. The result message sequence

is written to output trace.

More information about logical blocks composing the

runtime environment and their functionality within the DESR

is available in [11].

III. STATIC SEMANTICS

A. Static structure of the runtime

Runtime environment connects a set of resources and

logical objects of the model with the dispatcher .

 (1)

It is important to note that the resources and the logical objects

are binded to the only dispatcher throughout the model

execution.

B. Resource

The set of all resources is denoted by . For each resource

 a set of variables (memory cells) and event

container are attached. The variables from the set can take

values from the set .

There are two types of resources: direct access resources

 and indirect access resources . Direct access

resource keeps track of the values of related variables using

the map . In this case the resource stores only a

“local copy” of the original model data. Over a set of indirect

access resources a map to the set of

dispatchers is defined. This mapping allows one to distinguish

between attached and free model resources.

 (2)

 (3)

 (4)

C. Message and trace

The output trace is presented by the message sequence.

The message alphabet is denoted by .

 (5)

D. Event

Suppose there exists a set of all possible events . Each

event has a trace message and the type of event . There are

several event types in accordance with type of handling blocks

intended to store this event .

There are a number of maps defined over event set . The

logical object arisen the particular event could be found by the

mapping . Suppose that there is a set of event

attributes of all kinds . Then the mapping defines

an attribute set for each particular event.

Suppose there is a set of predicate symbols defined

over a set of resources and depending on the values of

attached variables . So the delay condition of event

could be presented as a formula of propositional logic

(quantifier-free first-order logic) over the set of

predicates .

The map changing the states set of resources and the

states set of logical objects associated with the event

is referenced as the modification . There

are only several ways to change model state:

1. To attach a new logical object to the dispatcher ,

2. To attach a new resource to the dispatcher ,

3. To change resource variables value ,

4. To change logical object activity limit value .

 (6)

 (7)

Event type imposes restrictions on the delay condition. The

delay condition of events of type "CEB" is always true. Events

of type "FEB" essentially depends only on the model time and

3

types "PEB" and "REB" by contrast are independent of model

time.

The notation denotes a set of significant variables of

 and denotes a resource containing the model

time. Then, the following expressions are correct
2
:

 (8)

 (9)

 (10)

The delay condition of each "FEB" event is true at a single

point on the axis of time.

 (11)

Introduce a special operator to determine its

value.

 (12)

There is also a dependency between the type of event and

its attribute set. The events of one type have the same attribute

set. Attribute set of the event with a type different from "CEB"

includes all of its attributes.

 (13)

 (14)

E. Logical object

The logical object uses the event generator to

schedule events. For each generator its current state

 and the step function are defined.

Newly scheduled events are stored in a local event queue

3
 with size limited by the capacity . In

addition to capacity the behavior of the logical object is

controlled by the activity level and the activity limit

.

Over the set of logical objects the mapping

to the dispatcher set is defined. This mapping allows one to

distinguish between attached and free logical objects.

 (15)

 (16)

 (17)

Generator constructs an event sequence using

the recurrence relation . Generator

schedules events in order of nondecreasing model time.

 (18)

The generator has ability to synchronize its own time

(presented explicitly or implicitly, through the scheduled

events) with the model time. In this case the step function

returns an empty symbol as the event . If

2 Here and henceforth the operator "." will be used to denote the tuple

element.
3 We assume that the event queue has several predefined operations:

1. – returns number of events in the queue,

2. – adds event to the back of the queue,

 – takes event from the head of queue.

the generator has planned all the events then step function

returns an empty symbol as the state .

F. Handling block

Handling block consists of one or several event containers

and a scheduler . The scheduler ranks

elements of attached containers and choose a certain event

range.

There are several types of handling blocks : “CEB",

"FEB", "PEB" and "REB”. Each block type has its own

distinctive features.

Blocks typed as "CEB", "FEB" and "REB" have a more

complex structure than a block of type "PEB". Two containers

are attached to these blocks. Block "FEB" also contains a

model clock (defining the event horizon) and the simulation

threshold . "REB" block has a resource container

intended to store resources changed on the current iteration of

event handle loop.

 (19)

 (20)

 (21)

 (22)

The event scheduler gives as the result an ordered set of

events with the delay condition met. The results of the

scheduler of "CEB" and "FEB" blocks includes all such events

whereas the schedulers of the remaining block types allowed

not giving all such events.

 (23)

 (24)

 (25)

The delay condition of event moved to "FEB" block

essentially depends on the model time, and is satisfied at only

point on the time axis. Scheduler of this block gives a set of

events with a minimum time:

 (26)

In addition time of each scheduled event does not exceed

the simulation threshold :

 (27)

G. Dispatcher

Output trace , handling blocks set and direct access

resource container are attached to the dispatcher .

 (28)

Handling block set includes a single block of “FEB”, and

can also include no more than one block of every other type.

Thus the assertion

 (29)

4

IV. OPERATIONAL SEMANTICS

In this chapter the concept of runtime environment and rules

of its changing are introduced. Algorithms for the initialization

of the runtime and model running are described.

A. Resource state

For each resource the state is determined as a

tuple consisting of variable value
4
 and a set of events

from attached container
5
.

 (30)

B. Logical object state

The state of the logical object is

defined as a pair of corresponding event generator and the

event set of events contained in the attached to the logical

object container .

 (31)

C. Handling block state

State of handling block set (29) is defined as a collection

of the contents of containers attached to them.

 (32)

 (33)

 (34)

 (35)

D. Dispatcher state

Dispatcher state is defined as a collection of the contents

of trace , attached handling blocks state and the content of

attached resource container.

 (36)

E. Runtime environment state

Runtime environment condition is characterized by the

state of resources and logical object of the model

and the state of the dispatcher .

 (37)

F. The rules of the runtime state changing

Rules (38)-(40) are intended to add a direct or indirect

access resource or logical object to the dispatcher.

Rule (41) describes the changes in the state of the runtime

after the value of resource variables changed.

Rule (42) defines the run of the model.

 (38)

 (39)

 (40)

4 To indicate the values of the object the operator will be used.
5 Under the value of the container the set of elements contained therein is

infered.

 (41)

 (42)

G. Searching events to transit into the handling blocks

;

The algorithm checks the readiness of the logical object to

schedule events and moves events created by them into the

handling blocks attached to the dispatcher. If the number of

such events in the handling blocks has reached the limit, some

of them are buffered into the local queue.

#Used while event handling – decrement activity level

;

IF ()

 #There are no more events produced by

 IF ()

 #Local event queue is empty

 WHILE () DO

 #Event generator can schedule events and local

queue is not full

 #Invoke event generator

 ;

 IF ()

 #Generator cannot schedule events yet

 BREAK;

 FI

 IF ()

 #Activity level is less than activity limit

 #Add event to handling block

 ;

 #Increment activity level

 ;

 ELSE

 #Handling block contain a limit event number

 #Add event to local event queue

 ;

 FI

 OD

 ELSE

 #Local event queue is not empty

 #Add a number of events less or equal to activity limit

 ;

 WHILE () DO

 #Transmit event from local queue to handling

blocks

 ;

 ;

 OD

 FI

FI

H. Addition of event to the handling blocks

;

The event is placed in a handling block in accordance with

its type.

5

#Load an event to handling block of the same type

IF ()

 ;

ELSEIF ()

 ;

ELSEIF ()

 ;

#Event type is “FEB” – other choices are sort out

ELSEIF ()

 #Event time is equal to current model time

 ;

ELSEIF ()

 #Event time is greater than simulation threshold

 ;

ELSE

 ;

FI

I. Event handle cycle

;

Algorithm iteratively retrieves ready events from handling

blocks, sorts them and calls for event handling. Model time

does not change during this process.

WHILE (TRUE) DO

 #Search for direct access resources with changed variable

value

 IF ()

 #Add resource to container of changed resource

 ;

 #Refresh value

 ;

 FI

 #Compose the contents of REB major event container

 #Add events with satisfied delay conditions

 #Add the rest to resource containers

 ;

 #Leave in auxiliary REB container only events with

satisfied delay condition

 ;

 #Add events depending on changed resources into the

REB major event container

 ;

 #Add events independent on resource state into CEB

auxiliary container

 ;

 #Compose the contents of CEB major event container

 ;

 ;

 IF (|)

 #No event was chosen

 BREAK:

 FI

 #Handle chosen events

 ;

OD

;

J. Event handling

;

Handled event is excluded from the handling block. Then

the model state changed in appropriate to this event way and

the information recorded in the trace. The dispatcher also

searches for the events created by the same logical object to

transfer into attached handling blocks.

IF ()

 #Event does not depend on resource state

 ;

ELSEIF ()

 ;

ELSEIF ()

 #Event delay condition was always satisfied

 ;

ELSE

 #Event was added into resource container

 ;

FI

#Change model state according to event

;

Add message to the output trace ;

;

K. Model time advancing

;

Selected by the scheduler of “FEB” block, events are

transferred from the major container to the additional one.

During this model time is changed to the arrival time of any of

the selected events (each of these events has the same arrival

time).

#Move event scheduled to current model time to auxiliary

container FEB

;

;

Set a new model time

;

V. REQUIREMENTS TO THE RUNTIME BLOCKS

Mathematical model allows identifying interfaces of blocks

that make up the runtime. Thus a sufficient condition for the

possibility of substituting a new runtime is the compliance of

its interfaces with the requirements.

There are several classes of requirements:

1. PRED – specifies pre-condition,

6

2. POST – specifies post-condition,

3. RET – determines the method return value,

4. EQ – specifies equivalence to the described algorithm.

Requirements for the interfaces of the blocks depend on its

type, and the configuration of the runtime as a whole. All

specifications are listed in table 1.

VI. OBSERVATIONS ON THE IMPLEMENTATION

Configurable runtime environment is developed as a

compile time library written in C++. The flexibility of the

runtime components is achieved through the use of template

classes. Thus each of these blocks is represented as a single

class. The new runtime environment with the necessary

properties can be created on the basis of the class layout.

The signature of class interfaces are variable and depend on

the configuration of the runtime. Nevertheless, they can be

checked at compile time. As appropriate tool the library Boost

Concept Check Library (BCCL) can be used [12]. This library

allows formal describing of the requirements for abstract data

types (concepts) used in templates and verify their compliance

with these requirements.

The most difficult requirements to verify are the ones to

interface of the handling blocks. Depending on the

configuration of the runtime their functionality can have

significant differences. But the number of fundamentally

different configurations of the handling block is low. Thus

partially specifying a template of dispatcher class and using

BCCL can impose restrictions on the interfaces of the

handling blocks for any possible configuration.

Semantic requirements for class interfaces can be checked

with unit testing. Tests for the blocks can be incorporated

directly into the library being developed so that using the

predefined flag tests new plug-in logical block [13]. Then

successfully tested blocks can be incorporated into the library

itself.

VII. CONCLUSION

Implementation of the developing library results into ability

to quickly build high-performance runtime environment with

the necessary properties. This only requires new instances of

some blocks. Thus a sufficient condition for the correctness of

the constructed DESR is the interface compliance to

formulated specifications which can be verified automated.

Tested blocks can in turn be included into the library. With

the increasing number of block instances the share of reusable

code will increase whereas the cost of developing new runtime

will be reduced to the layout of the ready-made blocks.

REFERENCES

[1] V. G. Moloney, R. L. Smelyansky, "An integrated approach to
modeling distributed computing systems", Programming N.1, 1988 pp.

57-67 (In Russian)

[2] A. Bakhmurov, A. Kapitonova, R. Smeliansky, "DYANA: An
Environment for Embedded System Design and Analysis", 5-th

International Conference TACAS'99, Amsterdam, The Netherlands,

March 22-28, 1999. Springer (LNCS Vol.1579), pp.390-404
[3] V. V. Balashov, A. G. Bahmurov, D. Yu. Volkanov, R. L. Smelyanskiy,

M. V. Chistolinov, N. V. Yushchenko, G. T. Mamontov, P. Yuhta

"Experience of the program DYANA implementation for simulation
and integration of on-board computing systems", Abstracts of reports

XXVI conference in memory of an outstanding designer gyroscopic

devices N. N. Ostryakov - St. Petersburg: Central Research Institute

Elektropribor, 2008. pp. 60-61 (In Russian).

[4] V. V. Balashov, A. G. Bakhmurov, M. V. Chistolinov, R. L.

Smeliansky, D. Yu. Volkanov, N. V. Youshchenko, “A Hardware-in-
the-Loop Simulation Environment for Real-Time Systems Development

and Architecture Evaluation”, In Proc. of the Third International

Conference on Dependability of Computer Systems DepCoS-
RELCOMEX 2008, Szklarska Poreba, Poland, June 26-28 2008.

[5] A. G. Bahmurov, E. G. Egisapetov, O. V. Novikov, V. V. Prus, K. O.
Savenkov, R. L. Smelyansky, "Tool support for software development

process for a special processor-based CPU L1879VM1 ", Methods and

means of processing information. Proceedings of the Second All-
Russian Scientific Conference. - M.: Publishing Department, Faculty of

Computational Mathematics and Cybernetics. Moscow State

University, 2005, pp.450-456
[6] C. D. Pegden, “Introduction to Simio”, Proceedings of the 40th

Conference on Winter Simulation (Miami, Florida, December 07 - 10,

2008), pp. 229-235.
[7] R. C. Crain, J. O. Henriksen, “Simulation using GPSS/H”, In

Proceedings of the 31st Conference on Winter Simulation: Simulation--

-A Bridge To the Future - Volume 1 (Phoenix, Arizona, United States,
December 05 - 08, 1999), pp. 182-187.

[8] T. J. Schriber, D. T. Brunner, "Inside discrete-event simulation

software: how it works and why it matters", Proceedings of the Winter
Simulation Conference, 2005, pp. 11 pp.+

[9] T. J. Schriber, D. T. Brunner, "Inside discrete-event simulation

software: how it works and why it matters", Proceedings of the Winter
Simulation Conference, 1996, pp. 11 pp.+

[10] P.J. Sanchez, "Fundamentals of simulation modeling", Proceedings of

the Winter Simulation Conference, 2007, 9-12 Dec. 2007 Page(s):54 –
62

[11] K. O. Savenkov, E. V. Chemeritskiy, “Discrete-event simulation

runtime: from genericity to extendability and reuse”, Simulation-2010,
submitted for publication.

[12] Boost library [Online]. Available: http://www.boost.org.

[13] A. H. Bagge, V. David, M. Haveraaen. “The axioms strike back: testing
with concepts and axioms in C++”, In Proceedings of the Eighth

international Conference on Generative Programming and Component

Engineering (Denver, Colorado, USA, October 04 - 05, 2009).

http://www.boost.org/

7

Table 1. Requirements to components of the runtime.
B

lo
ck

Method
Block

type
Configuration

Requirement

Type Specification

R
es

o
u

rc
e

RET

 RET

POST

Related waiting

PRED has been invoked.

POST has been invoked.

 POST

POST

 POST

 RET

T
ra

ce

 POST The message has been added to the trace.

E
v

en
t

RET

 RET

 RET

 POST

 RET

RET

Related waiting

POST

 POST

L
o

g
ic

al

o
b

je
ct

 POST

 EQ To algorithm

 Event buffer POST

 POST

H
an

d
li

n
g

 b
lo

ck

 POST

 POST

 RET .

 POST

 POST

 POST

 POST

 POST

Related waiting
POST

 POST Resource container has been reset.

 POST Ready to handle events have been reset.

 POST Unhandled events have been reset.

D
is

p
at

ch
er

 EQ To rule (1)

 Related waiting EQ To rule (2)

 POST has been invoked.

Related waiting
POST has been invoked.

 EQ To rule (3)

 EQ To algorithm

 EQ To algorithm

 EQ To algorithm

 EQ To rule (5)

