Published

2019-04-01

Mineralogical features and petrogenetic significance of the clinopyroxene and hornblende of the Wuhaolai mafic complex in northern North China Craton, Inner Mongolia

Características mineralógicas y significado petrogenético del clinopiroxeno y la hornblenda del complejo máfico de Wuhaolai en el Cratón del Norte de China, Mongolia Interior

DOI:

https://doi.org/10.15446/esrj.v23n2.66316

Keywords:

Wuhaolai mafic complex, genetic mineralogy, magmatic evolution, tectonic significance, margin of the North China Craton (en)
complejo máfico de Wuhaolai, mineralogía genética, evolución magmática, significación tectónica, margen del Cratón China del Norte. (es)

Downloads

Authors

  • Chen Wang Chang'an University - School of Earth Science and Resources
  • Liu Jianchao Chang'an University - School of Earth Science and Resources
  • zhang Haidong Chang'an University - School of Earth Science and Resources
  • Ge Jiakun Chang'an University - School of Earth Science and Resources
  • Xi Zhixuan Chang'an University - School of Earth Science and Resources
  • Wang Haoran Chang'an University - School of Earth Science and Resources
The Wuhaolai mafic complex is located in the north margin of the North China Craton (NCC), Inner Mongolia. To discuss the mineralogical features, magma evolution process, and tectonic setting of the complex, we analyzed the geochemical compositions of clinopyroxene and hornblende using an electron probe. The results revealed that the parental magma of this complex belonged to the intraplate alkaline basalt series. The normal zoning texture and the relation between Mg# and FeO, Al2O3, CaO, Na2O, SiO2 and Cr2O3 suggested that the clinopyroxenes of pyroxenite and gabbro crystallized from the same parental magma. The similar CaO content of clinopyroxenes indicated that the parental magma of the Wuhaolai complex may have suffered crustal contamination. Furthermore, the characteristics of hornblende demonstrated that the magma source was modified by fluids derived from subducted slab. Based on the value of Kdcpx (0.23–0.27), the equilibrium melt with clinopyroxene exhibited a relatively low Mg# (43–53), indicating that the parental magma was derived from the lithospheric mantle and underwent crystal fractionation. The gabbro crystallization temperature and pressure was found to be lower than that of pyroxenite, indicating that gabbro was formed at a lower depth than that of pyroxenite. Combining the tectonic setting discrimination diagram of clinopyroxene with the results of previous studies on the late Paleozoic intrusions near the research area, we proposed that the Wuhaolai complex was formed in an intraplate environment. The magma source was modified by fluids derived from the subducted slab during the subduction of the Paleo-Asian Ocean (PAO). After the PAO closure, the parental magma of the Wuhaolai complex was produced by the partial melting of the enriched lithospheric mantle

El complejo máfico de Wuhaolai está ubicado en el margen norte del Cratón del Norte de China (NCC), Mongolia Interior. Para analizar las características mineralógicas, el proceso de evolución del magma y el ajuste tectónico del complejo, analizamos las composiciones geoquímicas de clinopiroxeno y hornblenda utilizando una microsonda de electrones. Los resultados revelaron que el magma parental de este complejo pertenecía a la serie de basalto alcalino intraplaca. La textura normal de zonificación y la relación entre Mg # y FeO, Al2O3, CaO, Na2O, SiO2 y Cr2O3 sugirieron que los clinopiroxenos de piroxenita y gabbro se cristalizaron del mismo magma parental. El contenido similar de CaO de los clinopiroxenos indica que el magma parental del complejo Wuhaolai puede haber sufrido contaminación de la corteza. Además, las características de la hornblenda demostraron que la fuente de magma fue modificada por fluidos derivados de la losa subducida. Sobre la base del valor de Kdcpx (0.23–0.27), la masa fundida en equilibrio con clinopiroxeno exhibió un número de Mg relativamente bajo (43–53), lo que indica que el magma parental se derivó del manto litosférico y se sometió a un fraccionamiento de cristales. Se encontró que la temperatura y la presión de cristalización de gabbro eran más bajas que la de piroxenita, lo que indica que el gabro se formó a una profundidad más baja que la piroxenita. Combinando el diagrama de discriminación del ajuste tectónico del clinopiroxeno con los resultados de estudios previos sobre las últimas intrusiones del Paleozoico cerca del área de investigación, proponemos que el complejo Wuhaolai se forma en un entorno intraplaca. La fuente de magma fue modificada por fluidos derivados de la losa subducida durante la subducción del Océano Paleoasiático (PAO). Después del cierre de la PAO, el magma parental del complejo Wuhaolai se produjo mediante la fusión parcial del manto litosférico enriquecido

References

Arai, S., Abe, N., & Hirai, H. (2001). Geological, petrographical and petrological characteristics of ultramafic-mafic xenoliths in Kurose and Takashima, northern Kyushu, southwestern Japan. Science Reports of Kanazawa University, 46(01-02), 9–38.

Bohrson, W. A., & Clague, D. A. (1988). Origin of ultramafic xenoliths containing exsolved pyroxenes from Hualalai volcano, Hawaii. Contributions to Mineralogy and Petrology, 100(02), 139–155.

Bowen, N. L. (1928). The Evolution of The Igneous Rocks. Princeton University Press, 332.

Bryant, J. A., Yogodzinski, G. M., & Churikovca, T. G. (2007). Melt–mantle interactions beneath the Kamchatka arc: evidence from ultramafic xenoliths from Shiveluch volcano. Geochemistry, Geophysics, Geosystems, 8(4), Q04007.

Cao, S. R., Guo, X. A., & Wu, Z. L. (2002). Geology of the Inner Mongolia Autonomous Region (Ma, L.F., Qiao, X.F., Min, R.L. Geological Atlas of China). Beijing: Geological Publishing house, 1–348 (in Chinese with English abstract).

Chen, C. H., Presnall, D. C., & Stern, R. J. (1992). Petrogenesis of ultramafic xenoliths from the 1800 Kaupulehu flow, Hualalai volcano, Hawaii. Journal of Petrology, 33(1), 163–202.

Chen, Z. Q., Jiang, S. Y., Xu, Y. M., Zhu, Z. Y., & Zhou, W. (2015). Petrogenesis and magma evolution of Tertiary basalts from the Langjunshan area in the Jiurui mineralization district, Jiangxi Province: Evidence from pyroxene and feldspar (in Chinese with English abstract). ActaPetrologica Sinica, 31(3), 686-700.

Coltorti, M., Bonadiman, C., Faccini, B., Gregoir, M., O’Reilly, S.Y., & Powell, W. (2007). Amphiboles from suprasubduction and intraplate lithospheric mantle. Lithos, 99(1-2),68–84.

Condie, K.C. (1982). Plate Tectonics and Crust Evolution. New York: Pergamon Press.

Davis, G. A., Zheng, Y. D., & Wang, C. (2001). Mesozoic tectonic evolution of the Yanshan fold and thrust belt, with emphasis on Hebei and Liaoning Provinces, Northern China. In: Hendrix, M. S., & Davis, G. A. (Eds.) Paleozoic and Mesozoic tectonic evolution of central Asia: From continental assembly to intracontinental deformation. Geological Society of America Memoir, 194: 171–197.

Debari, S., Kay, S. M., & Kay, R. W. (1987). Ultramafic xenoliths from Adagdak volcano, Adak, Aleutian Islands, Alaska: deformed igneous cumulates from the Moho of an island arc. Journal of Geology, 95(3), 329–341.

Dobosi, G., & Fodor, R. V. (1992). Magma fractionation, replenishment, and mixing as inferred from green-core clinopyroxenes in Pliocene basanite, southern Slovakia. Lithos, 28(2), 133–150.

Fodor, R. V., & Galar, P. (1997). A view into the subsurface of Mauna Kea Volcano, Hawaii: crystallization processes interpreted through the petrology and petrography of gabbroic and ultramafic xenoliths. Journal of Petrology, 38(5), 581–624.

Han, B. F, Wang, S. G., Jahn, B. M., Hong, D. W., Kagamid, H., & Suna, Y. L. (1997). Depleted mantle source for the Ulungur River A-type granites from North Xinjiang, China: geochemistry and Nd–Sr isotopic evidence, and implications for the Phanerozoic crustal growth. Chemical Geology, 138(3-4), 135–159.

Haase, K. M., Hartmann, M., & Wallrabe-Adams, H. J. (1996). The geochemistry of ashes from Vesterisbanken Seamount, Greenland Basin: implications for the evolution of an alkaline volcano. Journal of Volcanology and Geothermal Research, 70(1-2), 1–19.

Hao, Z. Y., Niu, Y. F., Chen, M. C., Gao, Y., Chen, H. D., & Niu, X. N. (2016). LA-ICP-MS zircon U-Pb dating of the biotite monzonitic granite from Shihahe area in Inner Mongolia and its geological significance (in Chinese with English abstract). Geology In China, 43(1), 72–80.

Ho, K., Chen, J., Smith, A. D., & Juang, W. S. (2000). Petrogenesis of two groups of pyroxenite from Tungchihsu Penghu Islands, Taiwan Strait: implications for mantle metasomatism beneath SE China. Chemical Geology, 167(3-4), 355–372.

Hou, J. G., Su, S. G., Zhou, D., & Wang, Q. (2014). Petrological and geochemical characteristics of basic-ultrabasic complex from southern Wengen in Inner Mongolia and its tectonic setting (in Chinese with English abstract). Acta Petrologica Sinica, 30(12), 3729–3740.

Jian, P., Liu, D. Y., Kröner, A., Windley, B. F., Shi, Y. R., Zhang, W., Zhang, F. Q., Miao, L. C., Zhang, L. Q.,, & Tomurhuu, D. (2010). Evolution of a Permian intraoceanic arc-trench system in the Solonker suture zone, Central Asian Orogenic Belt, China and Mongolia. Lithos, 118(1-2), 169–190.

Jiang, C. Y., & An, S. Y. (1984). On Chemical Characteristics of Calcic Amphiboles from Igneous Rocks and Their Petrogenesis Significance (in Chinese with English abstract). Acta Mineralogy Sinica, 03, 1–9.

Kheraskova, T. N.,Volozh, Y. A., Didenko, A. N., & Bush, V. A. (2003). The Vendian-Early Paleozoic history of the continental margin of Eastern Paleogondwana, Paleoasian Ocean, and Central Asian Foldbelt. Russian Journal of Earth Sciences, 5(3), 165–184.

Kovács, I., Zajacz, Z., & Szabó, C. (2004). Type-II xenoliths and related metasomatism from the Nógrád-Gömör Volcanic Field, Carpathian-Pannonian region (northern Hungry-southern Slovakia). Tectonophysics, 393(1-4), 139–161.

Kusky, T. M., Windley, B. F., & Zhai, M. G. (2007). Tectonic evolution of the North China Block: from orogen to craton to orogen. Geological Society London Special Publications, 280(1), 1–34.

Leake, B. E., Woolley A. R., Arps, C. E. S., Birch, W. D., Gilbert, M. C..., & Guo, Y. Z. (1997). Nomenclature of amphiboles: Report of the Subcommittee on Amphiboles of the International Mineralogical Association, Commission on New Minerals and Mineral Names. International Conference on Formal Concept Analysis, 4390(7), 181-196.

Leterrier, J., Maury, R. C., & Thonon, P. (1982). Clinopyroxene composition as a method of identification of the magmatic affinities of paleo-volcanic series. Earth and Planetary Science Letters, 59, 139-154

Liu, J., Wang, C., Liu, Y., Zhang, H., Ge, J. (2017). Middle Permian Wuhaolai mafic complex in the northern North China Craton: Constraints on the subduction‐related metasomatic mantle and tectonic implication. Geological Journal, 1–19. DOI: https://doi.org/10.1002/gj.3085

Li, J.Y. (2006). Permian geodynamic setting of Northeast China and adjacent regions: closure of the Paleo-Asian Ocean and subduction of the Paleo-Pacific Plate. Journal of Asian Earth Science, 26(3-4), 207–224.

Li, Y. L., Zhou, H. W., & Brouwer. (2014a). Nature and timing of the Solonker suture of the Central Asian Orogenic Belt: insights from geochronology and geochemistry of basic intrusions in the Xilin Gol Complex, Inner Mongolia, China. Internal Journal of Earth Sciences, 103(1), 41–60.

Li, Y. L., Zhou, H. W., Brouwer, F. M., Xiao, W. J., Wijbrans, J. R., & Zhong, Z. Q. (2014b). Early Paleozoic to Middle Triassic bivergent accretion in the Central Asian Orogenic Belt: insights from zircon U–Pb dating of ductile shear zones in central Inner Mongolia, China. Lithos, 205(9), 84–111.

Liu, Y. R., Lv, X. B., Mei, W., & Dai, Y. C. (2012). Mineralogy of clinopyroxene from Pobei mafic-ultramafic complex in Beishan area , Xinjiang , and its geological significance (in Chinese with English abstract). Acta Petrologica ET Mineralogica, 31(2), 212-224.

Lu, Y. F. (2004). GeoKit - A geochemical toolkit for Microsoft Excel (in Chinese with English abstract). Geochimica, 33(05), 459-464.

Inner Mongolia Bureau of Geology and Mineral Resources (1991). Regional geology of the Inner Mongolia Autonomous Region (in Chinese with English abstract). Beijing: Geological Publishing House.

Luo, H. L., Wu, T. R., & Li, Y. (2007). Geochemistry and SHRIMP dating of the Kebu massif from Wulatezhongqi, Inner Mongolia: evidence for the Early Permian underplating beneath the North China Craton (in Chinese with English abstract). Acta Petrologica Sinica, 23(4), 755–766.

Menzies, M. A., Fan, W., & Zhang, M. (1993). Palaeozoic and Cenozoic lithoprobes and the loss of >120 km of Archean lithosphere, Sino-Korean craton, China. Geological Society of London Special Publications, 76(1), 71–81.

Morimoto, N. (1988). Nomenclature of pyroxenes. Acta Mineralogica, 8(4), 289–305.

Kim, N. Y., & Choi, S. N. (2016). Petrogenesis of Late Triassic ultramafic rocks from the Andong Ultramafic Complex, South Korea. Lithos, 264(1), 28-40.

Nisbet, E. G., & Pearce, J. A. (1977). Clinopyroxene composition in maficlavas from different tectonic settings. Contributions to Mineralogy and Petrology, 63(2), 149–160.

Niu, L. F., & Zhang, H. F. (2005). Mineralogy and petrogenesis of amphiboles from intermediate - mafic intrusions in southern Taihang Mountains (in Chinese with English abstract). Geotectonica Et Metallogenia, 29(2), 269–277.

Pan, Y. Q. (1996). Early Permian Bajiazi Ultra-Unit Intrusive Rock from and its Emplacement Mechanism Jianping Area. Liaoning Geology, 04, 284–292.

Putirka, K. (1999). Clinopyroxene + liquid equilibria to 100 kbar and 2450 K. Contributions to Mineralogy and Petrology, 135(2-3), 151–163.

Robinson, P. T., Zhou M. F., Hu X. F., Reynolds, P., Bai, W. J., &Yang, J. S. (1999). Geochemical constraints on the origin of the Hegenshan ophiolite, Inner Mongolia, China. Journal of Asian Earth Science, 17(4), 423–442.

Shi, G. Z., Faure, M., Xu, B., Zhao, P., & Chen, Y. (2013). Structural and kinematic analysis of the Early Paleozoic Ondor Sum-Hongqi mélange belt, eastern part of the Altaids (CAOB) in Inner Mongolia, China. Journal of Asian Earth Sciences, 66(5), 123–139.

Su, B. X., Qin, K. Z., Sun, H, Tang, D. M., Xiao, Q. H.,&Cao, M. J. (2009). Petrological and mineralogical characteristics of Hongshisha mafic-ultramafic complex in Beishan area, Xinjiang: Implications for assimilation and fractional crystallization (in Chinese with English abstract). Acta Petrologica Sinica, 25(4), 873–887.

Su, B. X., Qin, K. Z., Sun, H, Tang, D .M., Xiao, Q. H.,& Cao, M.J. (2009). Petrological and mineralogical characteristics of Hongshisha mafic-ultramafic complex in Beishan area, Xinjiang: Implications for assimilation and fractional crystallization (in Chinese with English abstract. Acta Geologica Sinica, 82(11), 1602–1612).

Tang, Y. J., Zhang, H. F., & Ying, J. F. (2014). Genetic significance of Triassic alkali-rich intrusive rocks in the Yinshan and neighboring areas (in Chinese with English abstract). Acta Petrologica Sinica, 30(7), 2031–2040.

Toplis, M. J., & Carroll, M. R. (1995). An experimental study of the influence of oxygen fugacity on Fe–Ti oxide stability, phase relations, and mineral-melt equilibria in ferro-basaltic systems. Journal of Petrology, 36(5), 1137–1170.

Xiao, W. J., Windley, B. F., Hao, J., & Zhai, M. G. (2003). Accretion leading to collision and the Permian Solonker suture, Inner Mongolia, China: termination of the central Asian orogenic belt. Tectonics, 22(6), 1484-1505.

Wang, J., Sun, F. Y., Li, B. L., Wang, Y. D., & Li, R. H. (2016). Age Petrogenesis and Tectonic Implications of Permian Hornblendite in Tugurige, Urad Zhongqi, Inner Mongolia (in Chinese with English abstract). Earth Science, 41(5), 792–808.

Wang, W. Q., Xu, Z. Y., Liu, Z. H., Zhao, Q. Y., & Jiang, X. J. (2013). Early-Middle Permian tectonic evolution of the central-northernmargin of the North China Craton: Constraints from zircon U-Pb ages and geochemistry of the granitoids (in Chinese with English abstract). Acta Petrologica Sinica, 29(9), 2987–3003.

Whitney, D. L. & Evans, B. W. (2010) Abbreviations for names of rock-forming minerals. American Mineralogist 95: 185-187. DOI: 10.2138/am.2010.3371.

Wilde, S. A., Zhao, G. C., & Sun, M. (2002). Development of the North China craton during the Late Archaean and its final amalgamation at 1.8 Ga; some speculations on its position within a global Palaeoproterozoic supercontinent. Gondwana Research, 5(1), 85–94.

Wilde, S. A., Zhou, X. H., Nemchin, A. A.,& Sun, M. (2003). Mesozoic crust–mantle interaction beneath the North China craton: a consequence of the dispersal of Gondwanaland and accretion of Asia. Geology, 31(9), 817–820.

Windley, B. F., Alexeiev, D., Xiao, W. J., & Badarch, G. (2007). Tectonic models for accretion of the Central Asian orogenic belt. Journal of the Geological Society of London, 164(12), 31–48.

Wu, F. Y., Xu, Y. G., Gao, S., & Zheng, J. P. (2008). Lithospheric thinning and destruction of the North China Craton (in Chinese with English abstract). Acta Petrologica Sinica, 24(6):1145–1174.

Wu, T. R., He, G. Q., & Zhang, C. (1998). On paleozoic tectonic in the Alxa Region, Inner Mongolia, China. Acta Geologica Sinica, 72(3), 256–263.

Xu, W. L., Yang, D. B., Pei, F. P., Wang, F., & Wang, W. (2009). Mesozoic Lithospheric Mantle Modified by Delaminated Lower Continental Crust in the North China Craton: Constraints from Compositions of Amphiboles from Peridotite Xenoliths (in Chinese with English abstract). Journal of Jilin University (Earth Science Edition), 3(39), 606-617.

Xue, J. Z., Bai, X. L., & Chen, W. (1986). Genetic mineralogy (in Chinese with English abstract). Wuhan: China University of Geosciences press, 114–121.

Yang, J. H., Wu, F. Y., Wilde, S. A., Belousova, E., & Griffin, W. L. (2008). Mesozoic decratonization of the North China Block. Geology, 36(6), 467–470.

Ying, J. F., Zhang, H. F., & Tang, Y. J. (2011). Crust-mantle interaction in the central North China Craton during the Mesozoic: evidence from zircon U-Pb chronology, Hf isotope and geochemistry of syenitic-monzonitic intrusions from Shanxi province. Lithos, 125(1-2), 449–462.

Yu L. F., Zhao W. X., Chen J. L., Guo, Q., & Wang B. D. (2011). Compositional zone investigation of clinopyroxene phenocryst in the Cenozoic ultra-potassic rocks from the middle-southern Lhasa block. Acta Petrologica Sinica, 27(12), 3666–3674.

Zhang, Q. W., Liu, Z. H., Chai, S. L., Xu, Z. Y., Zhao, Q. Y., & Xu, X. C. (2011). Geochronology and Geochemistry of Granodiorites from Wulan Area of Urad Zhongqi, Inner Mongolia (in Chinese with English abstract). Journal of Mineralogy and Petrology, 31(2), 7–14.

Zhang, S. H., Zhao, Y., Song, B., Yang, Z. Y., Hu, J. M., & Wu, C. H. (2007a). Carboniferous granitic plutons from the northern margin of the North China block: Implications for a late Paleozoic active continental margin. Journal of the Geological Society of London, 164(2), 451–463.

Zhang, S. H., Zhao, Y., Song, B., & Liu, D. Y. (2007b). Petrogenesis of the Middle Devonian Gushan diorite pluton on the northern margin of the North China block and its tectonic implications. Geological Magazine, 144(144),16-24.

Zhang, S. H., Zhao, Y., Song, B., Hu, J. M., Liu, S. W., Yang, Y. H., Chen, F. K., Liu, X. M., & Liu, J. (2008). Contrasting Late Carboniferous and Late Permian–Middle Triassic intrusive suites from the northern margin of the North China craton: geochronology, petrogenesis and tectonic implications. Geological Society America Bulletin, 121(121), 181-200.

Zhang, X. H., & Zhai, M. G. (2010). Magmatism and its metallogenetic effects during the Paleozoic continental crustal construction in northern North China: An overview (in Chinese with English abstract). Acta Petrologica Sinica, 26(5), 1329-1341.

Zhao, G. C., Wilde, S. A., & Cawood, P. A. (2001). Archean blocks and their boundaries in the North China craton: Lithological, geochemical, structural and P-T path constraints and tectonic evolution. Precambrian Research, 107(1-2), 45–73.

Zhao, L. (2008). Geochemistry and Tectonic Implications of the Late Palaeozoic mafic-ultramafic rocks belt on the middle segment of the northern margin of the North China Plate. Peking University.

Zhao, L., Wu, T. R., Luo, H. L., & He, Y. K. (2008). Petrology, Geochemistry and Tectonic Implications of the Wengeng Gabbros in Wulatezhongqi Area, Inner Mongolia (in Chinese with English abstract). Acta Scientiarum Naturalium Universitatis Pekinensis, 44(2), 201–211.

Zhao, L., Wu, T. R., Luo, H. L., He, Y. K., & Jing, X. (2008). Geochemistry of Huheengeer Complex, Bayan Obo Region, Inner Mongolia and its Tectonic Implications (in Chinese with English abstract). Geological Journal of China Universities, 14(01), 29–38.

Zhao, L., Wu, T. R., Luo, & H. L. (2011). SHRIMP U-Pb dating, geochemistry and tectonic implications of the Beiqigetao gabbros in Urad Zhongqi area, Inner Mongolia (in Chinese with English abstract). Acta Petrologica Sinica, 27(10), 3071–3082.

Zhao, P., Chen, Y., & Xu, B. (2013). Did the Paleo-Asian Ocean between North China Block and Mongolia Block exist during the late Paleozoic? First paleomagnetic evidence from central-eastern Inner Mongolia. Journal of Geophysical Research-solid Earth, 118(5), 1873-1894.

Zou, J. X., Liu, X. F., Deng, J. H., Ren, K. F., Li, C. H., Huang, Y. P., ..., & Yi, L. W. (2013). Research of the Clinopyroxene Zoning Phenomenon from the Basic-Ultrabasic Rocks in Jiulong Area, Shangri-La County, Yunnan Province, China (in Chinese with English abstract). Acta Mineralogy Sinica, 33(2), 210–220.

How to Cite

APA

Wang, C., Jianchao, L., Haidong, zhang, Jiakun, G., Zhixuan, X. and Haoran, W. (2019). Mineralogical features and petrogenetic significance of the clinopyroxene and hornblende of the Wuhaolai mafic complex in northern North China Craton, Inner Mongolia. Earth Sciences Research Journal, 23(2), 133–146. https://doi.org/10.15446/esrj.v23n2.66316

ACM

[1]
Wang, C., Jianchao, L., Haidong, zhang, Jiakun, G., Zhixuan, X. and Haoran, W. 2019. Mineralogical features and petrogenetic significance of the clinopyroxene and hornblende of the Wuhaolai mafic complex in northern North China Craton, Inner Mongolia. Earth Sciences Research Journal. 23, 2 (Apr. 2019), 133–146. DOI:https://doi.org/10.15446/esrj.v23n2.66316.

ACS

(1)
Wang, C.; Jianchao, L.; Haidong, zhang; Jiakun, G.; Zhixuan, X.; Haoran, W. Mineralogical features and petrogenetic significance of the clinopyroxene and hornblende of the Wuhaolai mafic complex in northern North China Craton, Inner Mongolia. Earth sci. res. j. 2019, 23, 133-146.

ABNT

WANG, C.; JIANCHAO, L.; HAIDONG, zhang; JIAKUN, G.; ZHIXUAN, X.; HAORAN, W. Mineralogical features and petrogenetic significance of the clinopyroxene and hornblende of the Wuhaolai mafic complex in northern North China Craton, Inner Mongolia. Earth Sciences Research Journal, [S. l.], v. 23, n. 2, p. 133–146, 2019. DOI: 10.15446/esrj.v23n2.66316. Disponível em: https://revistas.unal.edu.co/index.php/esrj/article/view/66316. Acesso em: 16 apr. 2024.

Chicago

Wang, Chen, Liu Jianchao, zhang Haidong, Ge Jiakun, Xi Zhixuan, and Wang Haoran. 2019. “Mineralogical features and petrogenetic significance of the clinopyroxene and hornblende of the Wuhaolai mafic complex in northern North China Craton, Inner Mongolia”. Earth Sciences Research Journal 23 (2):133-46. https://doi.org/10.15446/esrj.v23n2.66316.

Harvard

Wang, C., Jianchao, L., Haidong, zhang, Jiakun, G., Zhixuan, X. and Haoran, W. (2019) “Mineralogical features and petrogenetic significance of the clinopyroxene and hornblende of the Wuhaolai mafic complex in northern North China Craton, Inner Mongolia”, Earth Sciences Research Journal, 23(2), pp. 133–146. doi: 10.15446/esrj.v23n2.66316.

IEEE

[1]
C. Wang, L. Jianchao, zhang Haidong, G. Jiakun, X. Zhixuan, and W. Haoran, “Mineralogical features and petrogenetic significance of the clinopyroxene and hornblende of the Wuhaolai mafic complex in northern North China Craton, Inner Mongolia”, Earth sci. res. j., vol. 23, no. 2, pp. 133–146, Apr. 2019.

MLA

Wang, C., L. Jianchao, zhang Haidong, G. Jiakun, X. Zhixuan, and W. Haoran. “Mineralogical features and petrogenetic significance of the clinopyroxene and hornblende of the Wuhaolai mafic complex in northern North China Craton, Inner Mongolia”. Earth Sciences Research Journal, vol. 23, no. 2, Apr. 2019, pp. 133-46, doi:10.15446/esrj.v23n2.66316.

Turabian

Wang, Chen, Liu Jianchao, zhang Haidong, Ge Jiakun, Xi Zhixuan, and Wang Haoran. “Mineralogical features and petrogenetic significance of the clinopyroxene and hornblende of the Wuhaolai mafic complex in northern North China Craton, Inner Mongolia”. Earth Sciences Research Journal 23, no. 2 (April 1, 2019): 133–146. Accessed April 16, 2024. https://revistas.unal.edu.co/index.php/esrj/article/view/66316.

Vancouver

1.
Wang C, Jianchao L, Haidong zhang, Jiakun G, Zhixuan X, Haoran W. Mineralogical features and petrogenetic significance of the clinopyroxene and hornblende of the Wuhaolai mafic complex in northern North China Craton, Inner Mongolia. Earth sci. res. j. [Internet]. 2019 Apr. 1 [cited 2024 Apr. 16];23(2):133-46. Available from: https://revistas.unal.edu.co/index.php/esrj/article/view/66316

Download Citation

CrossRef Cited-by

CrossRef citations3

1. Haiqi Sun, Shaokui Pan, Hongyu Qin, Yimiao Liu, Xiaolong Wu. (2023). Age and Geochemistry of Zircon Megacrysts from Alluvial Deposits in the Huadian Area, Northeastern China. Minerals, 13(7), p.882. https://doi.org/10.3390/min13070882.

2. Linlin Hu, Shaokui Pan, Ren Lu, Jianping Zheng, Hongkun Dai, Anqi Guo, Li Yu, Haiqi Sun. (2022). Origin of gem-quality megacrysts in the Cenozoic alkali basalts from the Muling area, northeastern China. Lithos, 422-423, p.106720. https://doi.org/10.1016/j.lithos.2022.106720.

3. Shuimiao Fan, Bingfu Jin, Wei Yue, Lili Dang, Mengyao Wang, Qingxiang Kong. (2021). Type and genesis of amphibole in the Huanghe River and Changjiang River estuaries and significance of its provenance. Geosciences Journal, 25(5), p.575. https://doi.org/10.1007/s12303-020-0061-4.

Dimensions

PlumX

Article abstract page views

523

Downloads

Download data is not yet available.