Published

2020-01-01

Effect of water deficit on some physiological and biochemical responses of the yellow diploid potato (Solanum tuberosum L. Group Phureja)

Efecto del déficit hídrico sobre algunas respuestas fisiológicas y bioquímicas en papa amarilla diploide (Solanum tuberosum L. Group Phureja)

DOI:

https://doi.org/10.15446/agron.colomb.v38n1.78982

Keywords:

leaf area, membrane stability, malondialdehyde, proline (en)
área foliar, estabilidad de membranas, malondialdehído, prolina (es)

Downloads

Authors

  • Wilmar Ariza Universidad Nacional de Colombia - Bogotá - Facultad de Ciencias Agrarias - Departamento de Agronomía
  • Luis Ernesto Rodríguez Universidad Nacional de Colombia - Bogotá - Facultad de Ciencias Agrarias - Departamento de Agronomía
  • Darwin Moreno-Echeverry Universidad Nacional de Colombia - Bogotá - Facultad de Ciencias Agrarias - Departamento de Agronomía
  • Carlos Arturo Guerrero Universidad Nacional de Colombia - Bogotá - Facultad de Medicina - Departamento de Ciencias Fisiológicas
  • Liz Patricia Moreno Universidad Nacional de Colombia - Bogotá - Facultad de Ciencias Agrarias -Departamento de Agronomía https://orcid.org/0000-0002-5421-9580

Water availability is one of the main limitations of potato yields due to the high sensitivity of this crop to water deficit. The objective of this study was to determine the effect of water deficit on some physiological and biochemical responses in yellow diploid potato plants (Solanum tuberosum L. Group Phureja) of the cultivars Criolla Colombia, Criolla Dorada and Criolla Ocarina. Plants at tuber initiation were subjected to two treatments: continuous irrigation and water deficit imposed by withholding water at tuber initiation for 17 d. The results showed that plants under water deficit increased chlorophyll concentration, malondialdehyde and proline content. However, these plants showed a decrease in stomatal conductance, leaf
area, total dry mass and exhibited a higher root/shoot ratio in all potato cultivars. In addition, all the cultivars also showed a decrease in yield, which was associated with sensitivity to water stress. Although the high content of proline and high root/shoot ratio may be associated with tolerance to water deficit, this association was not observed in these cultivars, probably due to the high reduction of stomatal conductance, which limited the production of photoassimilates, plant growth, and,
therefore, the yield.

La disponibilidad hídrica es uno de las principales limitantes del rendimiento en papa debido a la alta sensibilidad de este cultivo al déficit hídrico. El objetivo de este estudio fue determinar el efecto del déficit hídrico sobre algunas respuestas fisiológicas y bioquímicas en plantas de papa amarilla diploide (Solanum tuberosum L. Group Phureja) de los cultivares Criolla
Colombia, Criolla Dorada y Criolla Ocarina. Las plantas al inicio de la tuberización fueron sometidas a dos tratamientos: riego continuo y déficit hídrico por suspensión de riego al inicio de la tuberización durante 17 días. Los resultados mostraron que las plantas con déficit hídrico aumentaron la concentración de clorofila y el contenido de malondialdehído y prolina. Sin
embargo, estas plantas también mostraron una disminución en la conductancia estomática, el área foliar y la masa seca total, y presentaron una mayor relación raíz/parte aérea en todos los cultivares. Además, todos los cultivares mostraron una disminución en el rendimiento, que se asoció con su sensibilidad al déficit hídrico. Aunque el alto contenido de prolina y la alta relación raíz/parte aérea pueden estar asociados con la tolerancia al déficit hídrico, esta asociación no se observó en estos cultivares, probablemente debido a la alta reducción de la conductancia estomática, que limitó la producción de fotoasimilados, el crecimiento de la planta y por tanto el rendimiento.

References

Anithakumari, A.M., K.N. Nataraja, R.G.F. Visser, and C.G. Van der Linden. 2012. Genetic dissection of drought tolerance and recovery potential by quantitative trait locus mapping of a diploid potato population. Mol. Breed. 30(3), 1413-1429. Doi: 10.1007/s11032-012-9728-5

Banik, P., W. Zeng, H. Tai, B. Bizimungu, and K. Tanino. 2016. Effects of drought acclimation on drought stress resistance in potato (Solanum tuberosum L.) genotypes. Environ. Expt. Bot. 126, 76-89. Doi: 10.1016/j.envexpbot.2016.01.008

Bates, L.S., R.P. Waldren, and I.D. Teare. 1973. Rapid determination of free proline for water-stress studies. Plant and Soil 39, 205-207. Doi: 10.1007/BF00018060

Cabello, R., F. De Mendiburu, M. Bonierbale, P. Monneveux, W. Roca, and E. Chujoy. 2012. Large-Scale evaluation of potato improved varieties, genetic stocks and landraces for drought tolerance. Amer. J. Pot. Res. 89, 400-410. Doi: 10.1007/s12230-012-9260-5

Coleman, W.K. 2008. Evaluation of wild Solanum species for drought resistance: 1. Solanum gandarillasii Cardenas. Environ. Exp. Bot. 62(3), 221-230. Doi: 10.1016/j.envexpbot.2007.08.007

Dallas-Costa, L., G. Vedove-Delle, G. Gianquinto, R. Giovanardi, and A. Peressotti. 1997. Yield, water use efficiency and nitrogen uptake in potato: influence of drought stress. Pot. Res. 40, 19-34. Doi: 10.1007/BF02407559

Devaux, A., P. Kromann, and O. Ortiz. 2014. Potatoes for sustainable global food security. Pot. Res. 57, 185-199. Doi: 10.1007/s11540-014-9265-1

Ghislain, D., M. Andrade, F. Rodríguez, R.J. Hijmans, and D.M. Spooner. 2006. Genetic analysis of the cultivated potato Solanum tuberosum L. Phureja Group using RAPDs and nuclear SSRs. Theor. Appl. Genet. 113, 1515-1527. Doi: 10.1007/s00122-006-0399-7

Hardigan, M.A., F.P.E. Laimbeer, L. Newton, E. Crisovan, J.P. Hamilton, B. Vaillancourt, K. Wiegert-Rininger, J.C. Wood, D.S. Douches, E.M. Farré, R.E. Villeux, and C.R. Buell. 2017. Genome diversity of tuber-bearing Solanum uncovers complex evolutionary history and targets of domestication in the cultivated potato. Proc. Natl. Acad. Sci. 114, 1-10. Doi: 10.1073/pnas.1714380114

Hsiao, T.C. 1973. Plant responses to water stress. Ann. Rev. Plant Physiol. 24, 519-570. Doi: 10.1146/annurev.pp.24.060173.002511

Jefferies, R.A. 1993. Cultivar responses to water stress in potato: effects of shoot and roots. New Phytologist 123, 491-498. Doi: 10.1111/j.1469-8137.1993.tb03761.x

Jefferies, R.A. 1995. Physiology of crop response to drought. pp. 61-74. In: Haverkort, A.J. and D.K.L. Mackerron (eds.). Potato ecology and modeling of crops under conditions limiting growth. Proceedings of the Second International Potato Modeling Conference. 1994, May 17-19, Wageningen, Netherlands. Netherlands, Springer. Doi: 10.1007/978-94-011-0051-9_4

Kammoun, M., O. Bouallous, M.F. Ksouri, and R. Gargouri-Bouzid. 2018. Agro-physiological and growth response to reduced water supply of somatic hybrid potato plants (Solanum tuberosum L.) cultivated under greenhouse conditions. Agr. Water. Manage. 203, 9-19. Doi: 10.1016/j.agwat.2018.02.032

Kesiime, V.E., G. Tusiime, I.N. Kashaija, R. Edema, P. Gibson, P. Namugga, and R. Kakuhenzire. 2016. Characterization and evaluation of potato genotypes (Solanum tuberosum L.) for tolerance to drought in Uganda. Amer. J. Pot. Res. 93, 543-551. Doi: 10.1007/s12230-016-9533-5

Lahlou, O., S. Ouattar, and J.F. Ledent. 2003. The effect of drought and cultivar on growth parameters, yield and yield components of potato. Agronomie 23, 257-268. Doi: 10.1051/agro:2002089

Li, J., Z. Cang, F. Jiao, X. Bai, D. Zhang, and R. Zhai. 2017. Influence of drought stress on photosynthetic characteristics and protective enzymes of potato at seedling stage. J. Sau. Soc. Agr. Sci. 16, 82-88. Doi: 10.1016/j.jssas.2015.03.001

Lima, A.L.S., F.M. DaMatta, H.A. Pinheiro, M.R. Totola, and M.E. Loureiro. 2002. Photochemical responses and oxidative stress in two clones of Coffea canephora under water deficit conditions. Environ. Exp. Bot. 47(3), 239-247. Doi: 10.1016/S0098-8472(01)00130-7

Littell, R.C., P.R. Henry, and C.B. Ammerman. 1998. Statistical analysis of repeated measures data using SAS procedures. J. Anim. Sci. 76(4), 1216-1231. Doi: 10.2527/1998.7641216x

Liu, F., C.R. Jensen, A. Shahanzari, M.N. Andersen, and S.E. Jacobsen. 2005. ABA regulated stomatal control and photosynthetic water use efficiency of potato (Solanum tuberosum L.) during progressive soil drying. Plant Sci. 168(3), 831-836. Doi: 10.1016/j.plantsci.2004.10.016

Lu, C. and J. Zhang. 1998. Effects of water stress on photosynthesis, chlorophyll fluorescence and photoinhibition in wheat plants. Aust. J. Plant Physiol. 25(8), 883-892. Doi: 10.1071/PP98129

Mahmud, A.A., M. Hassain, M.S. Kadian, and Md.A. Hoque. 2015. Physiological and biochemical changes in potato under water stress condition. Ind. J. Plant Physiol. 20(4), 297-303. Doi: 10.1007/s40502-015-0173-4

Mane, S.P., C.V. Robinet, A. Ulanov, R. Schafleitner, L. Tincopa, A. Gaudin, and R. Grene. 2008. Molecular and physiological adaptation to prolonged drought stress in the leaves of two Andean potato genotypes. Funct. Plant Biol. 35(8), 669. Doi:10.1071/FP07293

Monneveux, P., D.A. Ramírez, and M.T. Pino. 2013. Drought tolerance in potato (S. tuberosum L.): can we learn from drought tolerance research in cereals? Plant Sci. 205-206, 76-86. Doi: 10.1016/j.plantsci.2013.01.011

Peña, C., L.P. Restrepo-Sánchez, A. Kushalappa, L.E. Rodríguez-Molano, T. Mosquera, and C.E. Narváez-Cuenca. 2015. Nutritional contents of advanced breeding clones of Solanum tuberosum Group Phureja. LWT - Food Sci. Technol. 62, 76-82. Doi: 10.1016/j.lwt.2015.01.038

Ramírez, D.A., W. Yactayo, R. Gutiérrez, V. Mares, F. De Mendiburu, A. Posadas, and R. Quiroz. 2014. Chlorophyll concentration in leaves is an indicator of potato tuber yield in water-shortage conditions. Scientia Hort. 168, 202-209. Doi: 10.1016/j.scienta.2014.01.036

Rolando, J.L., D.A. Ramírez, W. Yactayo, P. Monneveux, and R. Quiroz. 2015. Leaf greenness as a drought tolerance related trait in potato (Solanum tuberosum L.). Environ. Exp. Bot. 110, 27-35. Doi: 10.1016/j.envexpbot.2014.09.006

Rudack, K., S. Seddig, H. Sprenger, K. Köhl, R. Uptmoor, and F. Ordon. 2017. Drought stress-induced changes in starch yield and physiological traits in potato. J. Agron. Crop Sci. 203, 494-505. Doi: 10.1111/jac.12224

SAS Institute. 2014. Base SAS 9.4 procedures guide: statistical procedures. SAS Institute Inc., Cary, USA.

Shao, H.B., L.Y. Chu, C.A. Jaleel, P. Manivannan, R. Panneerselvam, and M.A. Shao. 2009. Understanding water deficit stressinduced changes in the basic metabolism of higher plants - biotechnologically and sustainably improving agriculture and the ecoenvironment in arid regions of the globe. Crit. Rev. Biotechnol. 29, 131-151. Doi: 10.1080/07388550902869792

Shi, S., M. Fan, K. Iwama, F. Li, Z. Zhang, and L. Jia. 2015. Physiological basis of drought tolerance in potato grown under long-term water deficiency. Int. J. Plant Prod. 9(2), 305-320. Doi: 10.22069/IJPP.2015.2050

Singh, D.K., P.W.G. Sale, C.K. Pallaghy, and V. Singh. 2000. Role of proline and leaf expansion rate in the recovery of stressed white clover leaves with increased phosphorus concentration. New Phytol. 146, 261-269. Doi: 10.1046/j.1469-8137.2000.00643.x

Soltys-Kalina, D., J. Plich, D. Strzelczyk-Żyta, J. Śliwka, and W. Marezewski. 2016. The effect of drought stress on the leaf relative water content and tuber yield of a half-sib family of ‘Katahdin’-derived potato cultivars. Breed. Sci. 66(2), 328-331. Doi: 10.1270/jsbbs.66.328

Stiller, I., S. Dulai, M. Kondrák, R. Tarnai, L. Szabó, O. Toldi, and Z. Bánfalvi. 2008. Effects of drought on water content and photosynthetic parameters in potato plants expressing the trehalose-6-phosphate synthase gene of Saccharomyces cerevisiae. Planta 227(2), 299-308. Doi: 10.1007/s00425-007-0617-9

Teixeira, J. and S. Pereira. 2007. High salinity and drought act on an organ-dependent manner on potato glutamine synthetase expression and accumulation. Environ. Exp. Bot. 60, 121-126. Doi: 10.1016/j.envexpbot.2006.09.003

Timothy, S.G., M.A. Tailor., I.C. Dodd, and P.J. White. 2018. Climate change and consequences for potato production: a review of tolerance to emerging abiotic stress. Potato Res. 60, 239-269. Doi: 10.1007/s11540-018-9366-3

Tourneux, C., A. Devaux, M.R. Camacho, P. Mamani, and J.F. Ledent. 2003. Effect of water shortage on six potato genotypes in the highlands of Bolivia (II): water relations, physiological parameters. Agronomie 23(2), 169-179. Doi: 10.1051/agro:2002080

Van der Mescht, A., J.A. De Ronde, and F.T. Rossouw. 1999. Chlorophyll fluorescence and chlorophyll content as a measure of drought tolerance in potato. S. Afr. J. Sci. 95(9), 407-412.

Wang, Y., M. Ding, X. Gu, J. Wang, Y. Pang, L. Gao, and T. Xia. 2013. Analysis of interfering substances in the measurement of malondialdehyde content in plant leaves. Amer. J. Biochem. Biotechnol. 9(3), 235-242. Doi: 10.3844/ajbbsp.2013.235.242

How to Cite

APA

Ariza, W., Rodríguez, L. E., Moreno-Echeverry, D., Guerrero, C. A. and Moreno, L. P. (2020). Effect of water deficit on some physiological and biochemical responses of the yellow diploid potato (Solanum tuberosum L. Group Phureja). Agronomía Colombiana, 38(1), 36–44. https://doi.org/10.15446/agron.colomb.v38n1.78982

ACM

[1]
Ariza, W., Rodríguez, L.E., Moreno-Echeverry, D., Guerrero, C.A. and Moreno, L.P. 2020. Effect of water deficit on some physiological and biochemical responses of the yellow diploid potato (Solanum tuberosum L. Group Phureja). Agronomía Colombiana. 38, 1 (Jan. 2020), 36–44. DOI:https://doi.org/10.15446/agron.colomb.v38n1.78982.

ACS

(1)
Ariza, W.; Rodríguez, L. E.; Moreno-Echeverry, D.; Guerrero, C. A.; Moreno, L. P. Effect of water deficit on some physiological and biochemical responses of the yellow diploid potato (Solanum tuberosum L. Group Phureja). Agron. Colomb. 2020, 38, 36-44.

ABNT

ARIZA, W.; RODRÍGUEZ, L. E.; MORENO-ECHEVERRY, D.; GUERRERO, C. A.; MORENO, L. P. Effect of water deficit on some physiological and biochemical responses of the yellow diploid potato (Solanum tuberosum L. Group Phureja). Agronomía Colombiana, [S. l.], v. 38, n. 1, p. 36–44, 2020. DOI: 10.15446/agron.colomb.v38n1.78982. Disponível em: https://revistas.unal.edu.co/index.php/agrocol/article/view/78982. Acesso em: 28 may. 2024.

Chicago

Ariza, Wilmar, Luis Ernesto Rodríguez, Darwin Moreno-Echeverry, Carlos Arturo Guerrero, and Liz Patricia Moreno. 2020. “Effect of water deficit on some physiological and biochemical responses of the yellow diploid potato (Solanum tuberosum L. Group Phureja)”. Agronomía Colombiana 38 (1):36-44. https://doi.org/10.15446/agron.colomb.v38n1.78982.

Harvard

Ariza, W., Rodríguez, L. E., Moreno-Echeverry, D., Guerrero, C. A. and Moreno, L. P. (2020) “Effect of water deficit on some physiological and biochemical responses of the yellow diploid potato (Solanum tuberosum L. Group Phureja)”, Agronomía Colombiana, 38(1), pp. 36–44. doi: 10.15446/agron.colomb.v38n1.78982.

IEEE

[1]
W. Ariza, L. E. Rodríguez, D. Moreno-Echeverry, C. A. Guerrero, and L. P. Moreno, “Effect of water deficit on some physiological and biochemical responses of the yellow diploid potato (Solanum tuberosum L. Group Phureja)”, Agron. Colomb., vol. 38, no. 1, pp. 36–44, Jan. 2020.

MLA

Ariza, W., L. E. Rodríguez, D. Moreno-Echeverry, C. A. Guerrero, and L. P. Moreno. “Effect of water deficit on some physiological and biochemical responses of the yellow diploid potato (Solanum tuberosum L. Group Phureja)”. Agronomía Colombiana, vol. 38, no. 1, Jan. 2020, pp. 36-44, doi:10.15446/agron.colomb.v38n1.78982.

Turabian

Ariza, Wilmar, Luis Ernesto Rodríguez, Darwin Moreno-Echeverry, Carlos Arturo Guerrero, and Liz Patricia Moreno. “Effect of water deficit on some physiological and biochemical responses of the yellow diploid potato (Solanum tuberosum L. Group Phureja)”. Agronomía Colombiana 38, no. 1 (January 1, 2020): 36–44. Accessed May 28, 2024. https://revistas.unal.edu.co/index.php/agrocol/article/view/78982.

Vancouver

1.
Ariza W, Rodríguez LE, Moreno-Echeverry D, Guerrero CA, Moreno LP. Effect of water deficit on some physiological and biochemical responses of the yellow diploid potato (Solanum tuberosum L. Group Phureja). Agron. Colomb. [Internet]. 2020 Jan. 1 [cited 2024 May 28];38(1):36-44. Available from: https://revistas.unal.edu.co/index.php/agrocol/article/view/78982

Download Citation

CrossRef Cited-by

CrossRef citations7

1. Fahimeh Faridi Myvan, Majid Jami Al-Ahmadi, Seyed Vahid Eslami, Kourosh Shojaei Noferest. (2022). Role of Potassium in Modifying the Potato Physiological Responses to Irrigation Regimes Under Different Planting Patterns. Potato Research, 65(3), p.581. https://doi.org/10.1007/s11540-021-09536-7.

2. Nicolás Puentes Montealegre, Johanna Santamaría Vanegas, Carlos Eduardo Ñústez-López, Gladys Rozo. (2022). Control of N-NH4+ and K+ leaching in potato using a carrageenan hydrogel. Agronomía Colombiana, 40(1), p.85. https://doi.org/10.15446/agron.colomb.v40n1.98526.

3. Wendy Tatiana Cárdenas Pira, Liz Patricia Moreno Fonseca, Luis Ernesto Rodríguez. (2023). Mitigación del déficit hídrico por aplicación de calcio en papa amarilla diploide (Solanum tuberosum L. grupo Phureja) . Acta Agronómica, 72(1) https://doi.org/10.15446/acag.v72n1.93478.

4. Nutwadee Chintakovid, Rujira Tisarum, Thapanee Samphumphuang, Thanyaporn Sotesaritkul, Suriyan Cha-um. (2022). Evaluation of curcuminoids, physiological adaptation, and growth of Curcuma longa under water deficit and controlled temperature. Protoplasma, 259(2), p.301. https://doi.org/10.1007/s00709-021-01670-w.

5. Mustafa Akkamis, Sevgi Caliskan. (2023). Effects of Different Irrigation Levels and Nitrogen Fertilization on Some Physiological Indicators of Potato. Potato Research, https://doi.org/10.1007/s11540-023-09668-y.

6. Diego F. Vasquez, Anngie Hernandez, Diana Torres, Felipe Borrero‐Echeverry, Paola Zuluaga, Diego F. Rincon. (2022). Drought as a modulator of plant–virus–vector interactions: Effects on symptom expression, plant immunity and vector behaviour. Plant Pathology, 71(6), p.1282. https://doi.org/10.1111/ppa.13554.

7. Susan A. O’Shaughnessy, Hyungmin Rho, Paul D. Colaizzi, Fekede Workneh, Charles M. Rush. (2022). Impact of zebra chip disease and irrigation levels on potato production. Agricultural Water Management, 269, p.107647. https://doi.org/10.1016/j.agwat.2022.107647.

Dimensions

PlumX

Article abstract page views

772

Downloads

Download data is not yet available.