Influence of Selective Laser Melting Process Parameters on the Microstructure Formation

M. A. Latypova$^1$, S. L. Kuzmin$^2$, and A. S. Yerzhanov$^1$

$^1$Karaganda Industrial University, Republic av. 30, Temirtau, 101400 Kazakhstan
$^2$Rudny Industrial Institute, 50 let Oktyabrya Str. 38, 111500 Rudny, Kazakhstan

Received 08.03.2023; final version — 05.08.2023 Download PDF logo PDF

Abstract
Additive technologies for making products by laser melting of powders have been rapidly developed recently. However, such technologies impose increased requirements on the properties of alloys used for the manufacturing of parts. Laser-melting technologies are a promising direction in the development of metal products due to several advantages, such as: (1) the possibility of manufacturing the complex-shaped parts with internal cavities and thin partitions; (2) significant material savings due to the precise manufacturing of a part of a given shape according to a computer model that does not require the use of subsequent conventional turning, milling, and cutting operations; (3) achieving a higher level of mechanical properties due to increased cooling speeds compared to standard technologies by means of the formation of a more dispersed structure.

Keywords: additive technologies, powder metallurgy, selective laser melting, microstructure, microstructure control, heat treatment.

DOI: https://doi.org/10.15407/ufm.24.03.530

Citation: M. A. Latypova, S. L. Kuzmin, and A. S. Yerzhanov, Influence of Selective Laser Melting Process Parameters on the Microstructure Formation, Progress in Physics of Metals, 24, No. 3: 530–560 (2023)


References  
  1. W.E. King, A.T. Anderson, R.M. Ferencz, N.E. Hodge, C. Kamath, S.A. Khairallah, and A.M. Rubenchik, Appl. Phys. Rev., 2: 41304 (2015); https://doi.org/10.1063/1.4937809
  2. A. Kolesnikov, R. Fediuk, S. Klyuev, L. Sabitov, T. Zhuniskaliyev, B. Kelamanov, D. Yessengaliev, A. Yerzhanov, and O. Kolesnikova, Materials, 15: 2584 (2022); https://doi.org/10.3390/ma15072584
  3. I.E. Volokitina, J. Chem. Technol. Metall., 55, No. 2: 479 (2020).
  4. X.P. Li, C.W. Kang, H. Huang, L.C. Zhang, and T.B. Sercombe, Mater. Sci. Eng. A, 606: 370 (2014); https://doi.org/https://doi.org/10.1016/j.msea.2014.03.097
  5. S. Kenzari, D. Bonina, J.-M. Dubois, and V. Fournée, J. Mater. Process. Technol., 214: 3108 (2014); https://doi.org/https://doi.org/10.1016/j.jmatprotec.2014.07.011
  6. A. Donayev, A. Kolesnikov, S. Shapalov, B. Sapargaliyeva, and G. Ivakhniyuk, News of the National Academy of Sciences of the Republic of Kazakhstan, Series of Geology and Technical Sciences, 55 (2022).
  7. J. Majumdar and I. Manna, Laser Processing of Materials, 28: 495 (2003); https://doi.org/10.1007/BF02706446
  8. O. Kolesnikova, S. Syrlybekkyzy, R. Fediuk, A. Yerzhanov, R. Nadirov, A. Utelbayeva, A. Agabekova, M. Latypova, L. Chepelyan, I. Volokitina, N. Vatin, A. Kolesnikov, and M. Amran, Materials, 15: 6980 (2022); https://doi.org/10.3390/ma15196980
  9. W.M. Steen and J. Mazumder, Laser Material Processing (London: Springer: 2010); https://doi.org/10.1007/978-1-84996-062-5
  10. I. Volokitina, E. Siziakova, R. Fediuk, and A. Kolesnikov, Materials, 15, No. 14: 3975 (2022); https://doi.org/10.3390/ma15144930
  11. C.Y. Yap, C.K. Chua, Z.L. Dong, Z.H. Liu, D.Q. Zhang, L.E. Loh, and S.L. Sing, Appl. Phys. Rev., 2, No. 4: 041101 (2015); https://doi.org/10.1063/1.4935926
  12. W.T. Carter and M.G. Jones, Proceeding SFF Symp. (1993), vol. 51.
  13. I.J. Polmear, Light Alloys (Fourth Edition): From Traditional Alloys to Nanocrystals (Oxford: Butterworth-Heinemann: 2005), p. 1; https://doi.org/10.1016/B978-075066371-7/50005-0
  14. C.C. Ng, M.M. Savalani, H.C. Man, and I. Gibson, Virtual Phys. Prototyp., 5: 13 (2010); https://doi.org/10.1080/17452751003718629
  15. B. Zhang, H. Liao, and C. Coddet, Mater. Des., 34: 753 (2012); https://doi.org/10.1016/j.matdes.2011.06.061
  16. K. Wei, M. Gao, Z. Wang, and X. Zeng, Mater. Sci. Eng. A, 611: 212 (2014); https://doi.org/10.1016/j.msea.2014.05.092
  17. V. Manakari, G. Parande, and M. Gupta, Metals, 7, No. 1: 2 (2017); https://doi.org/10.3390/met7010002
  18. A.B. Spierings, K. Dawson, K. Kern, F. Palm, and K. Wegener, Mater. Sci. Eng. A, 701: 264 (2017); https://doi.org/10.1016/j.msea.2017.06.089
  19. N.T. Aboulkhair, N.M. Everitt, I. Maskery, I. Ashcroft, and C. Tuck, MRS Bull., 42: 311 (2017); https://doi.org/10.1557/mrs.2017.63
  20. D. Koutny, D. Palousek, O. Koukal, T. Zikmund, L. Pantelejev, and F. Dokoupil, Lasers Manuf. Conf., 2015 (2015).
  21. S. Lezhnev, A. Naizabekov, E. Panin, and I. Volokitina, Procedia Engineering, 81: 15 (2014); https://doi.org/10.1016/j.proeng.2014.10.180
  22. A. Naizabekov, S. Lezhnev, E. Panin, I. Volokitina, A. Arbuz, T. Koinov, and I. Mazur, J. Mater. Eng. Perform., 28: 200 (2019); https://doi.org/10.1007/s11665-018-3790-z
  23. T. Amine, J.W. Newkirk, and F. Liou, Appl. Therm. Eng., 73: 500 (2014); https://doi.org/10.1016/j.applthermaleng.2014.08.005
  24. S. Lezhnev, A. Naizabekov, A. Volokitin, and I. Volokitina, Procedia Engineering, 81: 1505 (2014); https://doi.org/10.1016/j.proeng.2014.10.181
  25. L. Parimi, R. Aswathanarayanaswamy, D. Clark, and M. Attallah, Mater. Charact. 89 (2014); https://doi.org/10.1016/j.matchar.2013.12.012
  26. S. Bhattacharya, G. Dinda, A. Dasgupta, and J. Mazumder, J. Mater. Sci., 49: 2415 (2014); https://doi.org/10.1007/s10853-013-7883-7
  27. G. Dinda, A. Dasgupta, S. Bhattacharya, H. Natu, B. Dutta, and J. Mazumder, Metall. Mater. Trans. A, 44: 2233(2012); https://doi.org/10.1007/s11661-012-1560-3
  28. T. DebRoy, H.L. Wei, J.S. Zuback, T. Mukherjee, J.W. Elmer, J.O. Milewski, A.M. Beese, A. Wilson-Heid, A. De, and W. Zhang, Prog. Mater. Sci., 92: 112 (2018); https://doi.org/10.1016/j.pmatsci.2017.10.001
  29. I. Volokitina, N. Vasilyeva, R. Fediuk, and A. Kolesnikov, Materials, 15: 3975 (2022); https://doi.org/10.3390/ma15113975
  30. A. Volokitin and A. Naizabekov, J. Chem. Technol. Metallurgy, 58, No. 4: 806 (2023); https://doi.org/10.3390/ma15144930
  31. L.N. Carter, C. Martin, P.J. Withers, and M.M. Attallah, J. Alloys Compd., 615: 338 (2014); https://doi.org/10.1016/j.jallcom.2014.06.172
  32. Z. Wang, R. Ummethala, N. Singh, S. Tang, C. Suryanarayana, J. Eckert, and K.G. Prashanth, Materials, 13, No. 20: 4564 (2020); https://doi.org/10.3390/ma13204564
  33. H. Zhang, H. Zhun, T. Qi, Z. Hu, and X. Zeng, Mater. Sci. Eng. A, 656: 47 (2016); https://doi.org/10.1016/j.msea.2015.12.101
  34. D. Bayoumy, D. Schliephake, S. Dietrich, X.H. Wu, Y.M. Zhu, and A.J. Huang, Mater. Des., 198: 15 (2021); https://doi.org/10.1016/j.matdes.2020.109317
  35. T. Amine, J. Newkirk, and F. Liou, Appl. Therm. Eng., 73, No. 1: 500 (2014); https://doi.org/10.1016/j.applthermaleng.2014.08.005
  36. I. Volokitina, Metal Science and Heat Treatment, 62: 253 (2020); https://doi.org/10.1007/s11041-020-00544-x
  37. B. Zhang, L. Dembinski, and C. Coddet, Mater. Sci. Eng. A, 584: 21 (2013); https://doi.org/10.1016/j.msea.2013.06.055
  38. M. Doubenskaia, M. Pavlov, and Y. Chivel, Key Eng. Mater, 437: 458 (2010); https://doi.org/10.4028/www.scientific.net/KEM.437.458
  39. Y. Gao, J. Xing, J. Zhang, N. Luo, and H. Zheng, Optik, 119: 618 (2008); https://doi.org/10.1016/j.ijleo.2007.01.010
  40. I.E. Volokitina, J. Chem. Technol. Metallurgy, 57: 631 (2022).
  41. D. Hu and R. Kovacevic, J. Mach. Tools Manuf., 43: 51 (2003); https://doi.org/10.1016/S0890-6955(02)00163-3
  42. T. Mukherjee, W. Zhang, and T. Debroy, Comput. Mater. Sci., 126 (2017); https://doi.org/10.1016/j.commatsci.2016.10.003
  43. T.G. Spears and S.A. Gold, Integr. Mater. Manuf. Innov., 5: 16 (2016); https://doi.org/10.1186/s40192-016-0045-4
  44. S. Katayama, Weld. Int., 14: 939 (2000); https://doi.org/10.1080/09507110009549297
  45. Y. Shi, K. Yang, S.K. Kairy, F. Palm, X. Wu, and P.A. Rometsch, Mater. Sci. Eng. A, 732: 41 (2018); https://doi.org/10.1016/j.msea.2018.06.049
  46. C. Galy, E. Le Guen, E. Lacoste, and C. Arvieu, Addit. Manuf., 22: 165 (2018); https://doi.org/10.1016/j.addma.2018.05.005
  47. M. Karg, B. Ahuja, S. Kuryntsev, A. Gorunow, and M. Schmidt, Int. Conf. 25th Solid Freeform Fabrication Symposium in Austin (Texas: 2014); https://doi.org/10.13140/RG.2.2.11672.85763
  48. K. Karami, A. Blok, L. Weber, S.M. Ahmadi, R. Petrov, K. Nikolic, E.V. Borisov, S. Leeflang, C. Ayas, A.A. Zadpoor, M. Mehdipour, E. Reinton, and V.A. Popovich, Addit. Manuf., 36: 101433 (2020); https://doi.org/10.1016/j.addma.2020.101433
  49. W.E. King, A.T. Anderson, R.M. Ferencz, N.E. Hodge, C. Kamath, S.A. Khairallah, and A.M. Rubenchik, Appl. Phys. Rev., 2: 41304 (2015); https://doi.org/10.1063/1.4937809
  50. T. Kimura and T. Nakamoto, Mater. Des., 89: 1294 (2016); https://doi.org/10.1016/j.matdes.2015.10.065
  51. C. Weingarten, D. Buchbinder, N. Pirch, W. Meiners, K. Wissenbach, and R. Poprawe, J. Mater. Process. Technol., 221: 112 (2015); https://doi.org/10.1016/j.jmatprotec.2015.02.013
  52. H. Zhang, H. Zhu, X. Nie, J. Yin, Z. Hu, and X. Zeng, Scr. Mater., 134: 6 (2017); https://doi.org/10.1016/j.scriptamat.2017.02.036
  53. T. Delgado, L. Gonza, F.J. Botana, and J.M. Sa, Appl. Surf. Sci., 255: 9512 (2009); https://doi.org/10.1016/j.apsusc.2009.07.081
  54. X. Cao, B. Wallace, C. Poon, and J.-P. Immarigeon, Mater. Manuf. Process., 18, No. 1: 1 (2003); https://doi.org/10.1081/AMP-120017586
  55. A.V. Volokitin, E.A. Panin, M.A. Latypova, and S.S. Kassymov, Eurasian Physical Technical Journal, 19, No. 1 (39): 73 (2022); https://doi.org/10.31489/2022No1/73-77
  56. G.K. Sigworth, Hot tearing of metals, AFS Transactions, 1053 (2002).
  57. D.G. Eskin and L. Katgerman, Metall. Mater. Trans. A, 38: 1511 (2007); https://doi.org/10.1007/s11661-007-9169-7
  58. M.L. Montero Sistiaga, R. Mertens, B. Vrancken, X. Wang, B. Van Hooreweder, J.P. Kruth, and J. Van Humbeeck, J. Mater. Process. Technol., 238: 437 (2016); https://doi.org/10.1016/j.jmatprotec.2016.08.003
  59. H.L. Wei, J.W. Elmer, and T. DebRoy, Acta Mater., 126: 413 (2017); https://doi.org/10.1016/j.actamat.2016.12.073
  60. H.L. Wei, J.W. Elmer, and T. Debroy, Origin of grain orientation during solidification of an aluminum alloy, Acta Mater., 115: 123 (2016); https://doi.org/10.1016/j.actamat.2016.05.057
  61. Y. Lee, M. Nordin, S.S. Babu, and D.F. Farson, Effect of fluid convection on dendrite arm spacing in laser deposition, Metall. Mater. Trans. B, 45: 1520 (2014); https://doi.org/10.1007/s11663-014-0054-7
  62. S. Chen, X. Zhan, Y. Zhao, Y. Wu, and D. Liu, Influence of laser power on grain size and tensile strength of 5a90 Al–Li alloy T-joint fabricated by dual laser-beam bilateral synchronous welding, Met. Mater. Int., 27: 1671 (2021); https://doi.org/10.1007/s12540-019-00538-2
  63. R. Rajan, P. Kah, B. Mvola, and J. Martikainen, Reviews on Advanced Materials Science, 44: 383 (2016).
  64. A.A.Y. Al-qenaei, Fusion Welding Techniques, 6: 78 (2016).
  65. I.N. Shiganov, S.V. Shakhov, and A.A. Kholopov, Lazernaya Svarka Alyuminievykh Splavov Aviatsionnogo Naznacheniya [Laser Welding of Aircraft Aluminium Alloys], Bulletin of N.E. Bauman Moscow State Technical University (2012) (in Russian).
  66. T.M. Radchenko, V.A. Tatarenko, H. Zapolsky, and D. Blavette, Statistical-Thermodynamic Description of the Order–Disorder Transformation of D019-Type Phase in Ti–Al Alloy, J. Alloys Compd., 452, No. 1: 122 (2008); https://doi.org/10.1016/j.jallcom.2006.12.149
  67. D.S. Leonov, T.M. Radchenko, V.A. Tatarenko, and Yu.A. Kunitsky, Kinetics Parameters of Atomic Migration and Diffuse Scattering of Radiations within the F.C.C.-Ni–Al Alloys, Defect and Diffusion Forum, 273–276: 520 (2008); https://doi.org/10.4028/www.scientific.net/DDF.273-276.520
  68. T.M. Radchenko, O.S. Gatsenko, V.V. Lizunov, and V.A. Tatarenko, Martensitic α″-Fe16N2-Type Phase of Non-Stoichiometric Composition: Current Status of Research and Microscopic Statistical-Thermodynamic Model, Progress in Physics of Metals, 21, No. 4: 580 (2020); https://doi.org/10.15407/ufm.21.04.580
  69. V.A. Tatarenko, S.M. Bokoch, V.M. Nadutov, T.M. Radchenko, and Y.B. Park, Semi-Empirical Parameterization of Interatomic Interactions and Kinetics of the Atomic Ordering in Ni–Fe–C Permalloys and Elinvars, Defect and Diffusion Forum, 280–281: 29 (2008); https://doi.org/10.4028/www.scientific.net/DDF.280-281.29
  70. V.A. Tatarenko and T.M. Radchenko, The Application of Radiation Diffuse Scattering to the Calculation of Phase Diagrams of F.C.C. Substitutional Alloys, Intermetallics, 11, Nos. 11–12: 1319 (2003); https://doi.org/10.1016/S0966-9795(03)00174-2
  71. I.M. Melnyk, T.M. Radchenko, and V.A. Tatarenko, Semi-Empirical Parameterization of Interatomic Interactions, Which Is Based on Statistical-Thermodynamic Analysis of Data on Phase Equilibriums in B.C.C.-Fe–Co Alloy. I. Primary Ordering, Metallofizika i Noveishie Tekhnologii, 32, No. 9: 1191 (2010).
  72. P. Kah, R. Rajan, J. Martikainen, R. Suoranta, Investigation of weld defects in friction-stir welding and fusion welding of aluminium alloys, Int. J. Mech. Mater. Eng., 10: 1 (2015); https://doi.org/10.1186/s40712-015-0053-8
  73. S. Kou, Solidification and liquation cracking issues in welding, JoM, 55: 37 (2003); https://doi.org/10.1007/s11837-003-0137-4
  74. A. Ramirez, J. Graciano-Uribe, D. Hincapie, and E. Torres, Segregation effect on solidification cracking in spot welding of the 6xxx aluminum, Eng. Trans., 68: 417 (2020); https://doi.org/10.24423/EngTrans.1185.20201120
  75. J.F. Lancaster, Non-ferrous metals, Metallurgy of Welding (Woodhead Publishing: 1999), p. 353; https://doi.org/10.1533/9781845694869.353
  76. C. Huang, G. Cao, and S. Kou, Sci. Technol. Weld. Join., 9, No. 2: 149 (2004); https://doi.org/10.1179/136217104225017071
  77. Y.C. Lee, A.K. Dahle, D.H. StJohn, and J.E.C. Hutt, Mater. Sci. Eng. A, 259: 43 (1999); https://doi.org/10.1016/S0921-5093(98)00884-3
  78. F. Wang, D. Qiu, Z.-L. Liu, J.A. Taylor, M.A. Easton, and M.-X. Zhang, Acta Mater., 61: 5636 (2013); https://doi.org/10.1016/j.actamat.2013.05.044
  79. Y.K. Xiao, Z.Y. Bian, Y. Wu, G. Ji, Y.Q. Li, M.J. Li, Q. Lian, Z. Chen, A. Addad, and H.W. Wang, J. Alloys Compd., 798: 644 (2019); https://doi.org/10.1016/j.jallcom.2019.05.279
  80. X. Wen, Q. Wang, Q. Mu, N. Kang, S. Sui, H. Yang, X. Lin, and W. Huang, Mater. Sci. Eng. A, 745: 319 (2019); https://doi.org/10.1016/j.msea.2018.12.072
  81. I.E. Volokitina, A.V. Volokitin, and E.A. Panin, Martensitic Transformations in Stainless Steels, Progress in Physics of Metals, 23, No. 4: 684 (2022); https://doi.org/10.15407/ufm.23.04.684
  82. Y. Shi, P. Rometsch, K. Yang, F. Palm, and X. Wu, Mater. Lett., 196: 347 (2017); https://doi.org/10.1016/j.matlet.2017.03.089
  83. J.H. Martin, B.D. Yahata, J.M. Hundley, J.A. Mayer, T.A. Schaedler, and T.M. Pollock, Nature, 549: 365 (2017); https://doi.org/10.1038/nature23894
  84. H. Zhang, H. Zhu, T. Qi, Z. Hu, and X. Zeng, Mater. Sci. Eng. A, 656: 47 (2016); https://doi.org/10.1016/j.msea.2015.12.101
  85. V.B. Molodkin, S.I. Olikhovskii, S.V. Dmitriev, A.I. Nizkova, and V.V. Lizunov, Acta Crystallographica Section A: Foundations and Advances, 76: 45 (2020); https://doi.org/10.1107/S2053273319014281
  86. V.B. Molodkin, S.I. Olikhovskii, S.V. Dmitriev, and V.V. Lizunov, Acta Crystallographica Section A: Foundations and Advances, 77: 433 (2021); https://doi.org/10.1107/S2053273321005775
  87. S.V. Lizunova, V.B. Molodkin, B.V. Sheludchenko, and V.V. Lizunov, Metallofizika i Noveishie Tekhnologii, 35, No. 11: 1585 (2013).
  88. E.G. Len, I.M. Melnyk, S.P. Repetsky, V.V. Lizunov, and V.A. Tatarenko, Materialwissenschaft und Werkstofftechnik, 42, No. 1: 47 (2011); https://doi.org/10.1002/mawe.201100729
  89. S.P. Repetsky, T.S. Len, and V.V. Lizunov, Metallofizika i Noveishie Tekhnologii, 28, No. 9: 1143 (2006).
  90. S.P. Repetsky, E.G. Len, and V.V. Lizunov, Metallofizika i Noveishie Tekhnologii, 28, No. 8: 989 (2006).
  91. M. Sheikhi, F.M. Ghaini, M.J. Torkamany, and J. Sabbaghzadeh, Sci. Technol. Weld. Join., 14: 161 (2009); https://doi.org/10.1179/136217108X386554
  92. Yu.Ya. Meshkov, G.P. Zimina, and N.M. Stetsenko, Nature of the Brittleness of Metals, Progress in Physics of Metals, 23, No. 4: 744 (2022); https://doi.org/10.15407/ufm.23.04.744
  93. M. Sheikhi, F. Malek Ghaini, and H. Assadi, Sci. Technol. Weld. Join., 19, No. 3: 250 (2014); https://doi.org/10.1179/1362171813Y.0000000190