Ukr.Biochem.J. 2013; Volume 85, Issue 5, Sep-Oct, pp. 27-36

doi: http://dx.doi.org/10.15407/ubj85.05.027

IP(3)-sensitive Ca(2+)-channels of endoplasmic reticulum in secretory cells of the rat exorbital lacrimal gland

A. B. Kotliarova, V. V. Manko

Ivan Franko National University of Lviv, Ukraine;
e-mail: annkotliarova@gmail.com

The role of inositol-1,4,5-trisphosphate of (IP3)-sensitive Ca2+ channels in Ca2+ homeostasis maintenance under activation of M-cholinergic receptors and P2Y receptors in the secretory cells of the rat lacrimal gland was investigated. The study was carried out on intact and permeabilized secretory cells of exorbital lacrimal glands of rats. The cells were isolated using the modified Herzog, Sides, Miller method (1976) and permeabilized with digitonin (50 mg per 0.5 million cells). The functioning of the Ca2+-transport systems was estimated by changes of Ca2+ content in the studied cells, which was determined by the spectrophotometric method using arsenazo III. It was shown that IP3-sensitive Ca2+ channels (IP3Rs) of investigated cells are directly inhibited by 2-APB (10 µM/l). On the other hand, the channels are activated by IP3, cholinomimetic (carbacholine) and purine receptor agonist (ATP). When both M-cholinergic receptors and P2Y receptors were activated Ca2+ was released from the same IP3-sensitive store because the effects of ATP and carbacholine at high concentrations (1 mM/l and 10 µM/l, respectively) on the Ca2+ content were non-additive. The presence of the store-operated Ca2+-channels in secretory cells of the lacrimal gland is confirmed by the observed increase of cellular Ca2+ content as a result of Ca2+ mobilization from the store by carbacholine or thapsigargin and following restoration of Ca2+ concentration in the extracellular solution.

Keywords: , , , , , , ,


References:

  1. Gromada J, Jørgensen TD, Dissing S. Role of protein kinase C in the regulation of inositol phosphate production and Ca2+ mobilization evoked by ATP and acetylcholine in rat lacrimal acini. Pflugers Arch. 1995 Feb;429(4):578-86. PubMed, CrossRef
  2. Medina-Ortiz WE, Gregg EV, Brun-Zinkernagel AM, Koulen P. Identification and functional distribution of intracellular ca channels in mouse lacrimal gland acinar cells. Open Ophthalmol J. 2007 Dec 4;1:8-16. PubMed, PubMedCentral, CrossRef
  3. Bird GS, Putney JW Jr. Effect of inositol 1,3,4,5-tetrakisphosphate on inositol trisphosphate-activated Ca2+ signaling in mouse lacrimal acinar cells. J Biol Chem. 1996 Mar 22;271(12):6766-70. PubMed, CrossRef
  4. Lee MG, Xu X, Zeng W, Diaz J, Wojcikiewicz RJ, Kuo TH, Wuytack F, Racymaekers L, Muallem S. Polarized expression of Ca2+ channels in pancreatic and salivary gland cells. Correlation with initiation and propagation of [Ca2+]i waves. J Biol Chem. 1997 Jun 20;272(25):15765-70. PubMed, CrossRef
  5. Cancela JM, Van Coppenolle F, Galione A, Tepikin AV, Petersen OH. Transformation of local Ca2+ spikes to global Ca2+ transients: the combinatorial roles of multiple Ca2+ releasing messengers. EMBO J. 2002 Mar 1;21(5):909-19. PubMed, PubMedCentral, CrossRef
  6. Ambudkar IS. Regulation of calcium in salivary gland secretion. Crit Rev Oral Biol Med. 2000;11(1):4-25. Review. PubMed, CrossRef
  7. Dubytsky LO. Energy-dependent Ca2+-transport systems of secretory cells of the exocrine glands and mechanisms of their interaction with metal cations: Authoref. Dis. … Dr. biol. Science. K., 2006. 39 p.
  8. Manko VV. Ca2+ transporting systems in secretory cells of exocrinic glands. Lviv: Ivan Franko National University of Lviv, 2011. 271 p.
  9. Manko VV, Bychkova SV, Klevets MYu. Identification of Ca2+ release channels in salivary glands secretory cells of Chironomus plumosus L. Ukr Biokhim Zhurn. 2004 Jan-Feb;76(1):65-71. Ukrainian. PubMed
  10. Chorna T, Manko V, Klevets M. Systems of Ca2+ transporting in salivary glands of Drosophila melanogaster Larvae. Visnyk Lviv Univ. Biology Series. 2009;(Is. 49):182-189.
  11. Dartt DA. Signal transduction and control of lacrimal gland protein secretion: a review. Curr Eye Res. 1989 Jun;8(6):619-36. Review. PubMed, CrossRef
  12. Mauduit P, Jammes H, Rossignol B. M3 muscarinic acetylcholine receptor coupling to PLC in rat exorbital lacrimal acinar cells. Am J Physiol. 1993 Jun;264(6 Pt 1):C1550-60. PubMed
  13. Herzog V, Sies H, Miller F. Exocytosis in secretory cells of rat lacrimal gland. Peroxidase release from lobules and isolated cells upon cholinergic stimulation. J Cell Biol. 1976 Sep;70(3):692-706. PubMed, PubMedCentral, CrossRef
  14. Velykopolska OYu, Man’ko BO, Manko VV.Endoplasmic-mitochondrial Ca(2+)-functional unit: dependence of respiration of secretory cells on activity of ryanodine- and IP3 – sensitive Ca(2+)-channels. Ukrainian. Ukr Biokhim Zhurn. 2012 Sep-Oct;84(5):76-88. PubMed
  15. Shlykov SG, Babich LG, Kosterin SA. Suspension of smooth muscle cells treated with digitonin as a model for studying the myometrial endoplasmic reticulum calcium pump. Biochemistry (Mosc). 1997 Dec;62(12):1666-1671. PubMed
  16. Manko BO, Klevets MY, Manko VV. An implication of novel methodology to study pancreatic acinar mitochondria under in situ conditions. Cell Biochem Funct. 2013 Mar;31(2):115-21. Epub 2012 Aug 13. PubMed, CrossRef
  17. Voogd TE, Vansterkenburg EL, Wilting J, Janssen LH. Recent research on the biological activity of suramin. Pharmacol Rev. 1993 Jun;45(2):177-203. Review. PubMed
  18. Missiaen L, Callewaert G, De Smedt H, Parys JB. 2-Aminoethoxydiphenyl borate affects the inositol 1,4,5-trisphosphate receptor, the intracellular Ca2+ pump and the non-specific Ca2+ leak from the non-mitochondrial Ca2+ stores in permeabilized A7r5 cells. Cell Calcium. 2001 Feb;29(2):111-6. PubMed, CrossRef
  19.  Wu J, Kamimura N, Takeo T, Suga S, Wakui M, Maruyama T, Mikoshiba K. 2-Aminoethoxydiphenyl borate modulates kinetics of intracellular Ca(2+) signals mediated by inositol 1,4,5-trisphosphate-sensitive Ca(2+) stores in single pancreatic acinar cells of mouse. Mol Pharmacol. 2000 Dec;58(6):1368-74. PubMed
  20. Kamada Y, Saino T, Oikawa M, Kurosaka D, Satoh Y. P2Y purinoceptors induce changes in intracellular calcium in acinar cells of rat lacrimal glands. Histochem Cell Biol. 2012 Jan;137(1):97-106. PubMed, CrossRef
  21. Bootman MD, Collins TJ, Mackenzie L, Roderick HL, Berridge MJ, Peppiatt CM. 2-aminoethoxydiphenyl borate (2-APB) is a reliable blocker of store-operated Ca2+ entry but an inconsistent inhibitor of InsP3-induced Ca2+ release. FASEB J. 2002 Aug;16(10):1145-50. Review. PubMedCrossRef
  22. Velykopolska O. Yu., Manko V. V. The role of endoplasmic Са2+-functional unit in P2Y-receptors signal transduction processes in Chironomus plumosus larvae secretory cells of salivary glands. Studiа Biologica. 2009;3(3):39-50.
  23. Putney JW Jr. A model for receptor-regulated calcium entry. Cell Calcium. 1986 Feb;7(1):1-12. Review. PubMed, CrossRef
  24. Kwan CY, Takemura H, Obie JF, Thastrup O, Putney JW Jr. Effects of MeCh, thapsigargin, and La3+ on plasmalemmal and intracellular Ca2+ transport in lacrimal acinar cells. Am J Physiol. 1990 Jun;258(6 Pt 1):C1006-15. PubMed
  25. Foskett JK, Roifman CM, Wong D. Activation of calcium oscillations by thapsigargin in parotid acinar cells. J Biol Chem. 1991 Feb 15;266(5):2778-82. PubMed
  26. Chew CS, Petropoulos AC. Thapsigargin potentiates histamine-stimulated HCl secretion in gastric parietal cells but does not mimic cholinergic responses. Cell Regul. 1991 Jan;2(1):27-39. PubMed, PubMedCentral, CrossRef
  27.  Putney JW Jr, McKay RR. Capacitative calcium entry channels. Bioessays. 1999 Jan;21(1):38-46. Review. PubMed, CrossRef
  28. Kiselyov KI, Mamin AG, Semyonova SB, Mozhayeva GN. Low-conductance high selective inositol (1,4,5)-trisphosphate activated Ca2+ channels in plasma membrane of A431 carcinoma cells. FEBS Lett. 1997 May 5;407(3):309-12. PubMed, CrossRef
  29. Ma HT, Patterson RL, van Rossum DB, Birnbaumer L, Mikoshiba K, Gill DL. Requirement of the inositol trisphosphate receptor for activation of store-operated Ca2+ channels. Science. 2000 Mar 3;287(5458):1647-51. PubMed, CrossRef
  30. Mikoshiba K, Hisatsune C, Futatsugi A, Mizutani A, Nakamura T, Miyachi K. The role of Ca2+ signaling in cell function with special reference to exocrine secretion. Cornea. 2008 Sep;27 Suppl 1:S3-8. Review. PubMed, CrossRef
  31. Dubyak GR, el-Moatassim C. Signal transduction via P2-purinergic receptors for extracellular ATP and other nucleotides. Am J Physiol. 1993 Sep;265(3 Pt 1):C577-606. Review. PubMed
  32. Burnstock G. Purinergic signalling. Br J Pharmacol. 2006 Jan;147(1):S172–S181.  CrossRef
  33. McMillian MK, Soltoff SP, Lechleiter JD, Cantley LC, Talamo BR. Extracellular ATP increases free cytosolic calcium in rat parotid acinar cells. Differences from phospholipase C-linked receptor agonists. Biochem J. 1988 Oct 1;255(1):291-300. PubMed, PubMedCentral
  34. Sasaki T, Gallacher DV. Extracellular ATP activates receptor-operated cation channels in mouse lacrimal acinar cells to promote calcium influx in the absence of phosphoinositide metabolism. FEBS Lett. 1990 May 7;264(1):130-4. PubMed, CrossRef
  35. Toescu EC, Lawrie AM, Petersen OH, Gallacher DV. Spatial and temporal distribution of agonist-evoked cytoplasmic Ca2+ signals in exocrine acinar cells analysed by digital image microscopy. EMBO J. 1992 Apr;11(4):1623-9. PubMed, PubMedCentral
  36. Ohtomo K, Shatos MA, Vrouvlianis J, Li D, Hodges RR, Dartt DA. Increase of intracellular Ca2+ by purinergic receptors in cultured rat lacrimal gland myoepithelial cells. Invest Ophthalmol Vis Sci. 2011 Dec 16;52(13):9503-15.  PubMedPubMedCentralCrossRef
  37.  Abbracchio MP, Burnstock G, Boeynaems JM, Barnard EA, Boyer JL, Kennedy C, Knight GE, Fumagalli M, Gachet C, Jacobson KA, Weisman GA. International Union of Pharmacology LVIII: update on the P2Y G protein-coupled nucleotide receptors: from molecular mechanisms and pathophysiology to therapy. Pharmacol Rev. 2006 Sep;58(3):281-341. Review. PubMed, PubMedCentral, CrossRef
  38.  Bruce JI, Shuttleworth TJ, Giovannucci DR, Yule DI. Phosphorylation of inositol 1,4,5-trisphosphate receptors in parotid acinar cells. A mechanism for the synergistic effects of cAMP on Ca2+ signaling. J Biol Chem. 2002 Jan 11;277(2):1340-8. PubMed, CrossRef
  39. Sneyd J, Tsaneva-Atanasova K, Bruce JI, Straub SV, Giovannucci DR, Yule DI. A model of calcium waves in pancreatic and parotid acinar cells. Biophys J. 2003 Sep;85(3):1392-405. PubMed, PubMedCentral, CrossRef
  40. Hurley TW, Shoemaker DD, Ryan MP. Extracellular ATP prevents the release of stored Ca2+ by autonomic agonists in rat submandibular gland acini. Am J Physiol. 1993 Dec;265(6 Pt 1):C1472-8. PubMed

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License.