• Українська
  • English
  • Русский
ISSN 2415-3400 (Online)
ISSN 1028-821X (Print)

HIGH FREQUENCY OHMIC LOSSES IN TERAHERTZ FREQUENCY RANGE CW CLINOTRONS

Kovshov, YS, Ponomarenko, SS, Kishko, SA, Vlasenko, SA, Lihachev, AA, Zavertanniy, VV, Khutoryan, EM, Kuleshov, AN
Organization: 

 

O. Ya. Usikov Institute for Radiophysics and Electronics of the National Academy of Sciences of Ukraine
12, Proskura st., Kharkov, 61085, Ukraine
Е-mail: jeanalexkh@gmail.com

V. N. Karazin Kharkiv National University
4 Svobody Sq., Kharkiv, 61022, Ukraine

Research Center for Development of Far-Infrared Region, University of Fukui

https://doi.org/10.15407/rej2017.01.068
Language: Russian
Abstract: 

Reliable simulations of electron-vacuum devices’ opera-tion parameters are an actual challenge during the R&D process. One of the most important problems is determining high frequency ohmic losses and taking them into account in the simulation. The surface roughness investigation of the clinotrons’ slow-wave structures, manufactured by electro discharge machining, with the methods of optical microscopy is proposed in this paper. As a result the real values of the surface roughness were considered for the high frequency ohmic losses estimation of the real slow-wave structures. Taking into account the electron beam interception with the slow-wave structure surface, the temperature load simulations have been carried out and the temperature gradient of the clinotrons’ slow-wave structures of 2-mm, 0.75-mm and 0.33-mm wavelength ranges was found. The electric conductivity decrease caused by surface roughness and increase of temperature of a slow-wave structure with beam current has been taken into account at the simulation of the clinotron output power. The qualitative and quantitative agreement between experimental data and simulation results was achieved for the 136 GHz and 301 GHz clinotrons.

Keywords: beam-wave interaction, clinotron, electric conductivity, high frequency losses, surface roughness, THz radiation sources

Manuscript submitted 20.12.2016
Radiofiz. elektron. 2017, 22(1): 68-76
Full text (PDF)

References: 
  1. IDEHARA, T., KOSUGA, K., AGUSU, L., IKEDA, R., OGAWA, I., SAITO, T., MATSUKI, Y., UEDA, K., FUJIWARA, T., 2010. Continuously frequency tunable high power sub-THz radiation source − gyrotron FU CW VI for 600 MHz DNP−NMR spectroscopy. J. Infrared Millimeter Terahz Waves. vol. 31, no. 7, pp. 775–790. DOI: https://doi.org/10.1007/s10762-010-9643-y
  2. YAMAZAKI, T., MIYAZAKI, A., SUEHARA, T., NAMBA, T., ASAI, S., KOBAYASHI, T., SAITO, H., OGAWA, I., IDEHARA, T. and SABCHEVSKI, S., 2012. Direct observation of the hyperfine transition of ground-state positronium. Phys. Rev. Lett. vol. 10a8, Iss. 25, pp. 253401-1–253401-5.
  3. VERTIY, A. A., KARNAUKHOV, I. M., SHESTOPALOV, V. P., 1990. The polarization of atomic nuclei with millimeter waves. Otv. red. I. I. Zalyubovskiy (ed.). Kiev: Naukova dumka (in Russian).
  4. ROSAYA, M., BLANK, M., ENGELKE, F., 2016. Instrumentation for solid-state dynamic nuclear polarization with magic angle spinning NMR. Journal of Magnetic Resonance. vol. 264, pp. 88–98. DOI: https://doi.org/10.1016/j.jmr.2015.12.026
  5. MATSUKI, Y., IDEHARA, T., FUKAZAWA, J., FUJIWARA, T., 2016. Advanced instrumentation for DNP-enhanced MAS NMR for higher magnetic fields and lower temperatures. Journal of Magnetic Resonance. vol. 264, pp. 107–115. DOI: https://doi.org/10.1016/j.jmr.2016.01.022
  6. KHUTORYAN, E., IDEHARA, T., KULESHOV, A., UEDA, K., 2015. Stabilization of Gyrotron Output Power by Use of PID Feedback Control of Anode Voltage. The Physical Society of Japan. P. 552.
  7. KHUTORYAN, E. M., IDEHARA, T., KULESHOV, A. N., TATEMATSU, Y., YAMAGUCH, Y., MATSUKI, Y., FUJIWARA, T., 2015. Stabilization of Gyrotron Frequency by PID Feedback Control on the Acceleration Voltage. J. Infrared Milli Terahz Waves. vol. 36, Iss. 12, pp. 1157–1163. DOI:  https://doi.org/10.1007/s10762-015-0212-2
  8. LYSENKO, E. E., PAN'KOV, S. V., PISHKO, O. F., CHUMAK, V. G., CHURILOVA, S. A., 2010. CW 400…500 GHz clinotron development. Elektromagnitnye volny i elektronnye sistemy. vol. 15, no. 11, pp. 63–71 (in Russian).
  9. PONOMARENKO, S. S., KISHKO, S. A., KHUTORYAN, E. M., KULESHOV, A. N., ZAVERTANNIY, V. V., LOPATIN, I. V., YEFIMOV, B. P., 2013. 400 GHz Continuous-wave clinotron oscillator. IEEE Trans. Plasma Sci. vol. 41, no. 1, pp. 82–86. DOI: https://doi.org/10.1109/TPS.2012.2226247
  10. KHUTORYAN, E., SATTOROV, M., LUKIN, K. A., OH-JOON, K., SUN-HONG, M., BHATTACHARYA, R., IN-KEUN, B., SEONTAE, K., MINWOO, YI., JOONHO, S., GUN-SIK, P., 2015. Theory of Multimode Resonant Backward-Wave Oscillator with an Inclined Electron Beam. IEEE Trans. Elec. Dev. vol. 62, no. 5, pp. 1628–1634. DOI: https://doi.org/10.1109/TED.2015.2411680
  11. KIRLEY, M. P., BOOSKE, J. H., 2015. The physics of conductivity at terahertz frequencies. In: Proc. IEEE International Vacuum Electronics Conference (IVEC). Beijing. DOI: https://doi.org/10.1109/IVEC.2015.7223746
  12. BOOSKE, J. H., DOBBS, R. J., JOYE, C. D., KORY, C. L., NEIL, G. R., GUN-SIK PARK, PARK, J., TEMKIN, R. J., 2011. Vacuum electronic high power terahertz sources. Trans. Terahertz Sci. and Tech. vol. 1, no. 1, pp. 54–75. DOI: https://doi.org/10.1109/TTHZ.2011.2151610
  13. GOLANT, M. B., MAKLAKOV, A. A., SHUR M. B., 1969. The manufacturing of resonators and slow-wave structures; N. D. Devyatkov (ed.). Moscow, USSR: Sovetskoe radio (in Russian).
  14. HVATOV, B. N., 2006.The measurement of the surface roughness parameters according to the GOST 2789–73 with the profile method instruments: laboratory work. Tambov, Russia: Tambov State Tech. Univ. Publ. (in Russian).
  15. SAFONOVA, T. N., 2008. Physics. V.3 Wave and quantum optics: guidelines for laboratory works. Livny, Russia: Orel State Technical University (OrelSTU) Publ. (in Russian).
  16. AWAD, A. M., ABDEL GHANY, N. A., DAHY, T. M., 2010. Remowal of tarnishing and roughness of copper surface by electropolishing treatment. Applied Surface Science. no. 256. P. 4370–4375. DOI: https://doi.org/10.1016/j.apsusc.2010.02.033
  17. KUSH, V. S., GOLANT, M. B., ZADVORNOV, M. G., 1964. The method of the slow-wave structure manufacturing for submillimeter wavelength range BWO’s. Voprosy spetsradioelektroniki. Ser. Elektronika SVCh. vol. 7, pp. 121–125 (in Russian).
  18. KUSH, V. S., 1971. The shallow slow-wave structure development for the UHF oscillators in the submillimeter wavelength range and their investigation. PhD thesis ed., Institute for Radiophysics and Electronics of AS of the UkrSSR, Kharkov (in Russian).
  19. LEVIN, G. Ya., BORODKIN, A. I., YEFIMOV, B. P., VASURENKO, A. P., RUDENKIY, G. Ya., YENDALZEV, L. I., 1962. The manufacturing of grating slow-wave systems of the submillimeter and millimeter ranges of radio waves using the floating rolling. In: Radiofizika i elektronika. Institute for radiophysics and electronics. vol. 10, pp. 223–226 (in Russian).
  20. LEVIN, G. Ya., BORODKIN, A. I., KIRICHENKO, A. Ya., CHURILOVA, S. A., USIKOV, A. Ya., 1992. Clinotron. Kiev: Naukova dumka (in Russian).
  21. GAMZINA, D., LI, H., HIMES, L., BARCHFELD, R., POPOVIC, B., PAN, P., LETIZIA, R., MINEO, M., FENG, J., PAOLONI, C., LUHMANN, N. C., 2016. Nanoscale Surface Roughness Effects on THz Vacuum Electron Device Performance. IEEE Trans. on Nanotechnology. vol. 15, no. 1, pp. 85–93. DOI: https://doi.org/10.1109/TNANO.2015.2503984
  22. BHATTACHARJEE, S., BOOSKE, J. H., KORY, C. L., VAN DER WEIDE, D. W., LIMBACH, S., GALLAGHER, S., WELTER, J. D., LOPEZ, M. R., GILDENBACH, R. M., IVES, R. L., READ, M. E., DIVAN, R., MANCINI, D. C., 2004. Folded Waveguide Traveling-Wave Tube Sources for Terahertz Radiation. IEEE Trans. on Plasma Sci. vol. 32, no. 3, pp. 1002–1013. DOI: https://doi.org/10.1109/TPS.2004.828886
  23. PONOMARENKO, S. S., KOVSHOV, Y. S., KISHKO, S. A., NOVIKOVA-KOROTUN, Y. S., KHUTORYAN, E. M., KULESHOV, A. N., 2016. Development of compact CW clinotrons for DNP-NMR spectroscopy. Proc. 9th Int. Kharkiv Symposium on Physics and Engineering of Microwaves, Millimeter and Submillimeter Waves (MSMW’2016). Kharkiv, pp. 1–4. DOI: https://doi.org/10.1109/MSMW.2016.7538043
  24. MINEO, M., PAOLONI, C., 2012. Comparison of THz Backward Wave Oscillators Based on Corrugated Waveguides. Progress In Electromagnetics Research Letters. vol. 30, pp. 163–171. DOI: https://doi.org/10.2528/PIERL12013107
  25. JOE, J., LOUIS, L. J., SCHARER, J. E., BOOSKE, J. H. and BASTEN, M. A., 1997. Experimental and theoretical investigations of a rectangular grating structure for low-voltage traveling wave tube amplifiers. Phys. Plasmas. vol. 4, no. 7, pp. 2707–2715. DOI: https://doi.org/10.1063/1.872547
  26. PUTILOV, K. A., 1962. The course of physics. Vol. II. Electricity. Tutorial. Moscow, USSR: Gostekhteorizdat (in Russian).
  27. SIVUHIN, D. V., 1975. General course of physics. Vol. 3. Thermodynamics and molecular physics. Moscow, USSR: Nauka (in Russian).
  28. SHEVCHIK, V. N., TRUBETZKOV, D. I., 1975. Electronics of backward wave tubes. Saratov, USSR: Saratov University (in Russian).
  29. TSIMRING, Sh. E., 2007. Electron beams and microwave vacuum electronics. New Jersey: John Wiley & Sons, Inc.
  30. GROW, R. W., WATKINS, D. A., 1955. Backward-Wave Oscillator Efficiency. Proceedings of the IRE. vol. 43, no 7, pp. 848–856. DOI: https://doi.org/10.1109/JRPROC.1955.278151
  31. ALYAMOVSKI, I. V., 1966. Electron beams and electron guns. Moscow, USSR: Sovetskoe radio (in Russian).
  32. BASTEN, M. A. AND BOOSKE, J. H., 1999. Two-plane focusing of high-space-charge sheet electron beams using periodically cusped magnetic fields. J. Appl. Phys. vol. 85, no 9, pp. 6313–6322. DOI: https://doi.org/10.1063/1.370132
  33. KIRICHENKO, A. YA., 2007. Ortoclinotron effect. In: Radiofizika i elektronika. vol. 12, spec. Iss., pp. 117–121 (in Russian).
  34. ALTSHULER, YU. G., TATARENKO, A. S., 1963. Low power backward wave tubes. Moscow, USSR: Sovetskoe radio (in Russian).
  35. KHUTORYAN, E. M., PONOMARENKO, S. S., KISHKO, S. A., LUKIN, K. A., KULESHOV, A. N., YEFIMOV, B. P., 2013. Autooscillations in O-type oscillator at excitation of space-surface mode in resonator with a periodically inhomogeneous grating. Izvestiya vuzov. Prikladnaya nelineynaya dinamika. vol. 21, no. 2, pp. 9–19.