Influence of Au on Formation of $L1_0$-Type Phase in Nanoscale [Fe$_{50}$Pt$_{50}$/Au/Fe$_{50}$Pt$_{50}$]$_n$ Films

M. Yu. Verbytska$^{1}$, M. N. Shamis$^{1}$, K. A. Grayvoronska$^{2}$, T. I. Verbytska$^{1}$, Iu. M. Makogon$^{1}$, Yu. V. Kudryavtsev$^{3}$

$^{1}$National Technical University of Ukraine ‘Igor Sikorsky Kyiv Polytechnic Institute’, 37 Peremohy Ave., UA-03056 Kyiv, Ukraine
$^{2}$I. M. Frantsevich Institute for Problems in Materials Science, NAS of Ukraine, 3 Academician Krzhyzhanovsky Str., UA-03142 Kyiv, Ukraine
$^{3}$G. V. Kurdyumov Institute for Metal Physics, NAS of Ukraine, 36 Academician Vernadsky Blvd., UA-03142 Kyiv, Ukraine

Received: 28.12.2017. Download: PDF

By means of the materials science methods, the effect of additional Au layers with a low surface energy (of $\cong$ 1.5 J/m$^2$) in [Fe$_{50}$Pt$_{50}$(15 nm)/Au(7.5 nm)/Fe$_{50}$Pt$_{50}$(15 nm)]$_n$ film compositions (where $n$ = 1, 2) obtained by the magnetron sputtering on SiO$_2$(100 nm)/Si(001) substrates on processes of thermally activated ordered $L1_0$-phase formation at annealing in vacuum is studied. As established, the disordered $A1$-FePt phase is formed in Fe$_{50}$Pt$_{50}$ (15 nm) layer in film compositions at deposition on substrates at room temperature. Both the ordering process and the ordered $L1_0$-FePt phase formation in films depend on level of compressive mechanical stresses in Fe$_{50}$Pt$_{50}$ (15 nm) layer. Increasing in intermediate Au layer number and total thickness of film composition in three times decreases of compressive-stresses’ level that leads to slowing-down of ordering processes, increasing in start ordering temperature from 650°C to 800°C, reducing in coercive force, and inhibiting of (001) texture with easy-magnetization axis location perpendicularly to film surface.

Key words: film, ordered $L1_0$-FePt phase, annealing, coercive force.

URL: http://mfint.imp.kiev.ua/en/abstract/v40/i03/0381.html

DOI: https://doi.org/10.15407/mfint.40.03.0381

PACS: 64.70.Nd, 68.35.Ct, 68.37.Rt, 68.55.J-, 68.60.Bs, 75.70.Ak, 81.15.Cd

Citation: M. Yu. Verbytska, M. N. Shamis, K. A. Grayvoronska, T. I. Verbytska, Iu. M. Makogon, and Yu. V. Kudryavtsev, Influence of Au on Formation of $L1_0$-Type Phase in Nanoscale [Fe$_{50}$Pt$_{50}$/Au/Fe$_{50}$Pt$_{50}$]$_n$ Films, Metallofiz. Noveishie Tekhnol., 40, No. 3: 381—395 (2018) (in Russian)


REFERENCES
  1. Development in Data Storage: Materials Perspective (Eds. S. N. Piramanayagam and T. C. Chong) (New York: John Wiley and Sons: 2012).
  2. A. T. McCallum, P. Krone, F. Springer, C. Brombacher, M. Albrecht, E. Dobisz, M. Grobis, D. Weller, and O. Hellwig, Appl. Phys. Lett., 98: 242503 (2011). Crossref
  3. D. Weller, O. Mosendz, G. Parker, S. Pisana, and T. S. Santos, phys. status solidi (a), 210: 1245 (2013). Crossref
  4. D. Weller, G. Parker, O. Mosendz, A. Lyberatos, D. Mitin, N. Y. Safonova, and M. Albrecht, J. Vac. Sci. Technol. B, 34: 060801 (2016). Crossref
  5. I. A. Vladymyrskyi, O. P. Pavlova, T. I. Verbitska, S. I. Sidorenko, G. L. Katona, D. L. Beke, and Iu. M. Makogon, Vacuum, 101: 33 (2014). Crossref
  6. O. P. Pavlova, T. I. Verbitska, I. A. Vladymyrskyi, S. I. Sidorenko, G. L. Katona, D. L. Beke, G. Beddies, M. Albrecht, and I. M. Makogon, Appl. Surf. Sci., 266: 100 (2013). Crossref
  7. Yu. N. Makogon, E. P. Pavlova, S. I. Sidorenko, T. I. Verbitskaya, I. A. Vladymyrskyi, and R. A. Shkarban, Metallofiz. Noveishie Tekhnol., 35, No. 4: 553 (2013) (in Russian).
  8. Yu. M. Makogon, E. P. Pavlova, S. I. Sidorenko, T. I. Verbitskaya, I. A. Vladymyrskyi, and O. V. Fihurna, Metallofiz. Noveishie Tekhnol., 35, No. 10: 1425 (2013) (in Ukrainian).
  9. Yu. M. Makogon, E. P. Pavlova, S. I. Sidorenko, T. I. Verbitskaya, M. Yu. Verbitska, and O. V. Fihurna, Metallofiz. Noveishie Tekhnol., 36, No. 11: 1513 (2014) (in Ukrainian). Crossref
  10. C. Feng, Q. Zhan, B. Li, J. Teng, M. Li, Y. Jiang, and G. Yu, Appl. Phys. Lett., 93: 152513 (2008). Crossref
  11. C. Feng, B.-H. Li, Y. Liu, J. Teng, M.-H. Li, Y. Jiang, and G.-H. Ya, J. Appl. Phys., 103: 023916 (2008). Crossref
  12. Y. S. Yu, H.-B. Li, W. L. Li, M. Liu, and W. D. Fei, J. Magn. Magn. Mater., 322: 1770 (2010). Crossref
  13. W. Y. Zhang, H. Shima, F. Takano, H. Akinaga, X. Z. Yu, T. Hara, W. Z. Zhang, K. Kimoto, Y. Matsui, and S. Nimori, J. Appl. Phys., 106: 033907 (2009). Crossref
  14. T. Maeda, T. Kai, A. Kikitsu, T. Nagase, and J. Akiyama, Appl. Phys. Lett., 80, No. 12: 2147 (2002). Crossref
  15. C. L. Platt, K. W. Wierman, E. B. Svedberg, R. van de Veerdonk, J. K. Howard, A. G. Roy, and D. E. Laughlin, J. Appl. Phys., 92, No. 10: 6104 (2002). Crossref
  16. Y. F. Ding, J. S. Chen, and E. Liu, J. Cryst. Growth, 276: 111 (2005). Crossref
  17. M. Albrecht and C. Brombacher, phys. status solidi (a), 210: 1272 (2013). Crossref
  18. C. L. Zha, S. H. He, B. Ma, Z. Z. Zhang, F. X. Gan, and Q. Y. Jin, IEEE Trans. Magn., 44, No. 11: 3539 (2008). Crossref
  19. K. W. Wierman, C. L. Platt, J. K. Howard, and F. E. Spada, J. Appl. Phys., 93, No. 10: 7160 (2003). Crossref
  20. S. N. Hsiao, S. K. Chen, T. S. Chin, Y. W. Hsu, H. W. Huang, F. T. Yuan, H. Y. Lee, and W. M. Liao, J. Magn. Magn. Mater., 321: 2459 (2009). Crossref
  21. S. N. Hsiao, F. T. Yuan, H. W. Chang, H. W. Huang, S. K. Chen, and H. Y. Lee, Appl. Phys. Lett., 94: 232505 (2009). Crossref
  22. F. T. Yuan, S. H. Liu, W. M. Liao, S. N. Hsiao, S. K. Chen, and H. Y. Lee, IEEE Trans. Magn., 48, No. 3: 1139 (2012). Crossref
  23. S. N. Hsiao, S. H. Liu, S. K. Chen, F. T. Yuan, and H. Y. Lee, J. Appl. Phys., 111: 07A702 (2012). Crossref
  24. C. H. Lai, C. H. Yang, C. C. Chiang, T. Balaji, and T. K. Tseng, Appl. Phys. Lett., 85: 4430 (2004). Crossref
  25. S. N. Hsiao, S. K. Chen, S. H. Liu, C. J. Liao, F. T. Yuan, and H. Y. Lee, IEEE Trans. Magn., 47, No. 10: 3637 (2011). Crossref
  26. S. N. Hsiao, S. H. Liu, S. K. Chen, T. S. Chin, and H. Y. Lee, Appl. Phys. Lett., 100: 261909 (2012). Crossref
  27. J.-S. Kim, Y.-M. Koo, and N. Shin, J. Appl. Phys., 100: 093909 (2006). Crossref
  28. J.-S. Kim, Y.-M. Koo, B.-J. Lee, and S.-R. Lee, J. Appl. Phys., 99: 053906 (2006). Crossref
  29. W. Hsu, S. K. Chen, W. M. Liao, F. T. Yuan, W. C. Chang, and J. L. Tsai, J. Alloys Compd., 449: 52 (2008). Crossref
  30. R. M. Hazen and A. Navrotsky, Amer. Mineral., 81: 1021 (1996). Crossref
  31. X. Li, F. Wang, Y. Liu, L. Xu, J. Zhao, B. Liu, and X. Zhang, Appl. Phys. Lett., 94: 172512 (2009). Crossref
  32. Y.-N. Hsu, S. Jeong, D. E. Laughlin, and D. N. Lambeth, J. Magn. Magn. Mater., 260: 282 (2003). Crossref
  33. Y.-N. Hsu, S. Jeong, D. E. Laughlin, and D. N. Lambeth, J. Appl. Phys., 89: 7068 (2001). Crossref
  34. A. C. Sun, F. T. Yuan, and J.-H. Hsu, J. Phys.: Conf. Ser., 200: 102009 (2010). Crossref
  35. E. Chason and P. R. Guduru, J. Appl. Phys., 119: 191101 (2016). Crossref