Funct. Mater. 2013; 20 (3): 357-365.

http://dx.doi.org/10.15407/fm20.03.357

Temperature dependence of the surface plasmon resonance in silver nanoparticles

O.A.Yeshchenko[1], I.S.Bondarchuk[1], A.A.Alexeenko[2], A.V.Kotko[3]

[1]Physics Department, T.Shevchenko National University of Kyiv, 4 Akademik Glushkov Ave., 03127 Kyiv, Ukraine
[2]Laboratory of Technical Ceramics and Silicates, Gomel State Technical University, 48 October Ave., 246746 Gomel, Belarus
[3]I.Frantsevich Institute for Problems of Materials Science, Krzhizhanovsky St., 03680 Kyiv, Ukraine 

Abstract: 

The temperature dependences of energy and width of the surface plasmon resonance were studied for silver nanoparticles with sizes 24  nm and 60  nm in silica host matrix in the temperature range of 17—700°  C. The temperature increase leads to red shift and broadening of the surface plasmon resonance in Ag  nanoparticles. The obtained temperature dependences were analyzed within the framework of theoretical model considering the thermal expansion of a nanoparticle, the electron-phonon scattering in the nanoparticle and the temperature dependence of dielectric permittivity of the host matrix. The thermal expansion was shown to be the main mechanism responsible for the temperature induced red shift of the surface plasmon resonance in silver nanoparticles. Meanwhile, the increase of electron-phonon scattering rate with increasing temperature was shown to be the dominant mechanism of the surface plasmon resonance broadening in the silver nanoparticles.

References: 

1.U.Kreibig, M.Vollmer, Optical Properties of Metal Clusters, Springer, Berlin, Heidelberg (1995). http://dx.doi.org/10.1007/978-3-662-09109-8

2.C.F.Bohren, D.R.Huffman, Absorption and Scattering of Light by Small Particle, Wiley, New York (1998). http://dx.doi.org/10.1002/9783527618156

3.U.Kreibig, Appl.Phys.B, 93, 79 (2008). http://dx.doi.org/10.1007/s00340-008-3213-1

4.W.A.Challener, C.Peng, A.V.Itagi et al., Nature Photon., 3, 303 (2009). http://dx.doi.org/10.1038/nphoton.2009.71

5.L.R.Hirsch, R.J.Stafford, J.A.Bankson et al., Proc.Nat.Acad.Sci.USA, 100, 13549 (2003). http://dx.doi.org/10.1073/pnas.2232479100

6.A.Lowery, A.Gobin, E.Day et al., Breast Cancer Res.Treat., 100, S289 (2006).

7.A.Lowery, A.Gobin, E.Day et al., Int.J.Nanomed., 1, 149 (2006). http://dx.doi.org/10.2147/nano.2006.1.2.149

8.L.Cao, D.N.Barsic, A.R.Guichard, M.L.Brongersma, Nano Lett., 7, 3523 (2007). http://dx.doi.org/10.1021/nl0722370

9.W.Cai, J.S.White, M.L.Brongersma, Nano Lett., 9, 4403 (2009). http://dx.doi.org/10.1021/nl902701b

10.U.Kreibig, J.Phys.F, 4, 999 (1974). http://dx.doi.org/10.1088/0305-4608/4/7/007

11.R.H.Doremus, J.Chem.Phys., 40, 2389 (1964). http://dx.doi.org/10.1063/1.1725519

12.R.H.Doremus, J.Chem.Phys., 42, 414 (1965). http://dx.doi.org/10.1063/1.1695709

13.P.Mulvaney, Nanoscale Materials in Chemistry, ed. K.J.Klabunde, Wiley & Sons, New York (2001).

14.J.-S.G.Bouillard, W.Dickson, D.P.O'Connor et al., Nano Lett., 12, 1561 (2012). http://dx.doi.org/10.1021/nl204420s

15.O.A.Yeshchenko, I.S.Bondarchuk, V.S.Gurin et al., Surf.Sci., 608, 275 (2013). http://dx.doi.org/10.1016/j.susc.2012.10.019

16.D.Yu.Fedyanin, A.V.Krasavin, A.V.Arsenin, A.V.Zayats, Nano Lett., 12, 2459 (2012). http://dx.doi.org/10.1021/nl300540x

17.S.Link, M.A.El-Sayed, J.Phys.Chem.B, 103, 4212 (1999). http://dx.doi.org/10.1021/jp984796o

18.U.Kreibig, U.Genzel, Surf.Sci., 156, 678 (1985). http://dx.doi.org/10.1016/0039-6028(85)90239-0

19.S.Link, M.El-Sayed, J.Phys.Chem.B, 103, 8410 (1999). http://dx.doi.org/10.1021/jp9917648

20.C.Kittel, Introduction to Solid State Physics, Willey, New York (2005).

21.N.I.Grigorchuk, P.M.Tomchuk, Phys.Rev.B, 84, 085448 (2011). http://dx.doi.org/10.1103/PhysRevB.84.085448

22.K.Ujihara, J.Appl.Phys., 43, 2374 (1972). http://dx.doi.org/10.1063/1.1661506

23.N.W.Ashcroft, N.D.Mermin, Solid State Physics, Saunders College, Philadelphia (1976).

24.R.H.Bube, Electrons in Solids: An Introductory Survey, Academic Press, London (1992).

25.Z.Li-Jun, G.Jian-Gang, Z.Ya-Pu, Chin.Phys.Lett., 26, 066201 (2009). http://dx.doi.org/10.1088/0256-307X/26/6/066201

26.J.H.Wray, J.T.Neu, J.Opt.Soc.Am., 59, 774 (1969). http://dx.doi.org/10.1364/JOSA.59.000774

27.P.B.Johnson, R.W.Christy, Phys.Rev.B, 6, 4370 (1972). http://dx.doi.org/10.1103/PhysRevB.6.4370

28.R.C.Lincoln, K.M.Koliwad, P.B.Ghate, Phys.Rev., 157, 463 (1967). http://dx.doi.org/10.1103/PhysRev.157.463

Current number: