Nitro-substituted aurones as xanthine oxidase inhibitors

Keywords: aurone, xanthine oxidase, inhibition, kinetics, molecular docking

Abstract

Aurone derivatives possessing a wide range of biological activities are of high interest in medicinal chemistry. Carboxylated aurones were found previously to inhibit xanthine oxidase, which is a potential target for treatment of hyperuricemia and gout. In this paper, a series of B-ring nitro-substituted aurone derivatives were studied in vitro as inhibitors of this enzyme. The introduction of hydroxyl group into the B-ring of nitro-functionalized aurones resulted in significant increase of their inhibitory potency. At the same time, aurones chlorinated at ring A and containing nitro and hydroxyl groups at ring B showed only slightly increased inhibition effect. The kinetic studies and molecular docking calculations were carried out to explain the inhibition mechanism of xanthine oxidase by the nitro-substituted aurone derivatives.

Downloads

Download data is not yet available.

References

Brondino, C.D.; Romão, M.J.; Moura, I.; Moura, J.J. G. Molybdenum and tungsten enzymes: the xanthine oxidase family. Curr. Opin. Chem. Biol. 2006, 10, 109-114. https://doi.org/10.1016/j.cbpa.2006.01.034

Ribeiro, P.M.; Fernandes, H.S.; Maia, L.B.; Sousa, S.F.; Moura, J.J.; Cerqueira, N.M. The complete catalytic mechanism of xanthine oxidase: a computational study. Inorg. Chem. Front. 2021, 8, 405-416. https://doi.org/10.1039/D0QI01029D

Saito, H.; Tanaka, K.; Iwasaki, T.; Oda, A.; Watanabe, S.; Kanno, M.; Kimura, H.; Shimabukuro, M.; Asahi, K.; Watanabe, T.; Kazama, J.J. Xanthine oxidase inhibitors are associated with reduced risk of cardiovascular disease. Sci. Rep. 2021, 11, 1380. https://doi.org/10.1038/s41598-020-80835-8

Battelli, M.G.; Polito, L.; Bortolotti, M.; Bolognesi, A. Xanthine oxidoreductase in cancer: more than a differentiation marker. Cancer Med. 2016, 5, 546-557. https://doi.org/10.1002/cam4.601

Pacher, P.; Nivorozhkin, A., Szabó, C. Therapeutic effects of xanthine oxidase inhibitors: renaissance half a century after the discovery of allopurinol. Pharmacol. Rev. 2006, 58, 87-114. https://doi.org/10.1124/pr.58.1.6

Jordan, A.; Gresser, U. Side effects and interactions of the xanthine oxidase inhibitor febuxostat. Pharmaceuticals (Basel). 2018, 11, 51. https://doi.org/10.3390/ph11020051

Luna, G.; Dolzhenko, A.V.; Mancera, R.L. Inhibitors of xanthine oxidase: scaffold diversity and structure-based drug design. ChemMedChem. 2019, 14, 714-743. https://doi.org/10.1002/cmdc.201900034

Singh, J.V.; Bedi, P.M.S.; Singh, H.; Sharma, S. Xanthine oxidase inhibitors: patent landscape and clinical development (2015-2020). Expert Opin. Ther. Pat. 2020, 30, 769-780. https://doi.org/10.1080/13543776.2020.1811233

Zhang, T.; Lv, Y.; Lei, Y.; Liu, D.; Feng, Y.; Zhao, J.; Chen, S.; Meng, F.; Wang, S. Design, synthesis and biological evaluation of 1-hydroxy-2-phenyl-4-pyridyl-1H-imidazole derivatives as xanthine oxidase inhibitors. Eur. J. Med. Chem. 2018, 146, 668-677. https://doi.org/10.1016/j.ejmech.2018.01.060

Wang, S.; Yan, J.; Wang, J.; Chen, J.; Zhang, T.; Zhao, Y.; Xue, M. Synthesis of some 5-phenylisoxazole-3-carboxylic acid derivatives as potent xanthine oxidase inhibitors. Eur. J. Med. Chem. 2010, 45, 2663-2670. https://doi.org/10.1016/j.ejmech.2010.02.013

Xu, X.; Deng, L.; Nie, L.; Chen, Y.; Liu, Y.; Xie, R.; Li, Z. Discovery of 2-phenylthiazole-4-carboxylic acid, a novel and potent scaffold as xanthine oxidase inhibitors. Bioorg. Med. Chem. Lett. 2019, 29, 525-528. https://doi.org/10.1016/j.bmcl.2019.01.005

Li, J.; Wu, F.; Liu, X.; Zou, Y.; Chen, H.; Li, Z.; Zhang, L. Synthesis and bioevaluation of 1-phenyl-pyrazole-4-carboxylic acid derivatives as potent xanthine oxidoreductase inhibitors. Eur. J. Med. Chem. 2017, 140, 20-30. https://doi.org/10.1016/j.ejmech.2017.08.047

Zhang, T.-J.; Wu, Q.-X.; Li, S.-Y.; Wang, L.; Sun, Q.; Zhang, Y.; Meng, F.-H.; Gao, H. Synthesis and evaluation of 1-phenyl-1H-1,2,3-triazole-4-carboxylic acid derivatives as xanthine oxidase inhibitors. Bioorg. Med. Chem. Lett. 2017, 27, 3812-3816. https://doi.org/10.1016/j.bmcl.2017.06.059

Hayashi, T.; Sawa, K.; Kawasaki, M.; Arisawa, M.; Shimizu, M.; Morita, N. Inhibition of cow's milk xanthine oxidase by flavonoids. J. Nat. Prod. 1988, 51, 345-348. https://doi.org/10.1021/np50056a030

Santi, M.D.; Zunini, M.P.; Vera, B.; Bouzidi, C.; Dumontet, V.; Abin-Carriquiry, A.; Grougnet, R.; Ortega, M.G. Xanthine oxidase inhibitory activity of natural and hemisynthetic flavonoids from Gardenia oudiepe (Rubiaceae) in vitro and molecular docking studies. Eur. J. Med. Chem. 2018, 143, 577-582. https://doi.org/10.1016/j.ejmech.2017.11.071

Hofmann, E.; Webster, J.; Do, T.; Kline, R.; Snider, L.; Hauser, Q.; Higginbottom, G.; Campbell, A.; Ma, L.; Paula, S. Hydroxylated chalcones with dual properties: Xanthine oxidase inhibitors and radical scavengers. Bioorg. Med. Chem. 2016, 24, 578-587. https://doi.org/10.1016/j.bmc.2015.12.024

Singh, J.V.; Mal, G.; Kaur, G.; Gupta, M.K.; Singh, A.; Nepali, K.; Singh, H.; Sharma, S.; Bedi, P.M.S. Benzoflavone derivatives as potent antihyperuricemic agents. Medchemcomm. 2019, 10, 128-147. https://doi.org/10.1039/C8MD00512E

Costantino, L.; Rastelli, G.; Albasini, A. Natural polyhydroxylated compounds as inhibitors of xanthine oxidase. Pharmazie. 1996, 51, 994-995.

Muzychka, O.V.; Kobzar, O.L.; Popova, A.V.; Frasinyuk, M.S.; Vovk, A.I. Carboxylated aurone derivatives as potent inhibitors of xanthine oxidase. Bioorg. Med. Chem. 2017, 25, 3606-3613. https://doi.org/10.1016/j.bmc.2017.04.048

Narsinghani, T.; Sharma, M.C.; Bhargav, S. Synthesis, docking studies and antioxidant activity of some chalcone and aurone derivatives. Med. Chem. Res. 2013, 22, 4059-4068. https://doi.org/10.1007/s00044-012-0413-3

Haudecoeur, R.; Ahmed-Belkacem, A.; Yi, W.; Fortunè, A.; Brillet, R.; Belle, C.; Nicolle, E.; Pallier, C.; Pawlotsky, J.-M.; Boumendjel, A. Discovery of naturally occurring aurones that are potent allosteric inhibitors of hepatitis C virus RNA-dependent RNA polymerase. J. Med. Chem. 2011, 54, 5395-5402. https://doi.org/10.1021/jm200242p

Meguellati, A.; Ahmed-Belkacem, A.; Yi, W.; Haudecoeur, R.; Crouillère, M.; Brillet, R.; Pawlotsky, J.-M.; Boumendjel, A.; Peuchmaur, M. B-ring modified aurones as promising allosteric inhibitors of hepatitis C virus RNA-dependent RNA polymerase. Eur. J. Med. Chem. 2014, 80, 579-592. https://doi.org/10.1016/j.ejmech.2014.04.005

Bhasker, N.; Reddy M.K. Synthesis and characterization of new series of prenyloxy chalcones, prenyloxy aurones and screening for anti-bacterial activity. Int. J. Res. Pharm. Biomed. Sci. 2011, 2, 1266-1272.

Olleik, H.; Yahiaoui, S.; Roulier, B.; Courvoisier-Dezord, E.; Perrier, J.; Pérès, B.; Hijazi, A.; Baydoun, E.; Raymound, J.; Boumendjel, A.; Maresca, M.; Haudecoeur, R. Aurone derivatives as promising antibacterial agents against resistant Gram-positive pathogens. Eur. J. Med. Chem. 2019, 165, 133-141. https://doi.org/10.1016/j.ejmech.2019.01.022

Bandgar, B.P.; Patil, S.A.; Korbad, B.L.; Biradar, S.C.; Nile, S.N.; Khobragade, C.N. Synthesis and biological evaluation of a novel series of 2,2-bisaminomethylated aurone analogues as anti-inflammatory and antimicrobial agents. Eur. J. Med. Chem. 2010, 45, 3223-3227. https://doi.org/10.1016/j.ejmech.2010.03.045

Souard, F.; Okombi, S.; Beney, C.; Chevalley, S.; Valentin, A.; Boumendjel, A. 1-Azaaurones derived from the naturally occurring aurones as potential antimalarial drugs. Bioorg. Med. Chem. 2010, 18, 5724-5731. https://doi.org/10.1016/j.bmc.2010.06.008

Alsayari, A.; Muhsinah, A.B.; Hassan, M.Z.; Ahsan, M.J.; Alshehri, J.A.; Begum, N. Aurone: a biologically attractive scaffold as anticancer agent. Eur. J. Med. Chem. 2019, 166, 417-431. https://doi.org/10.1016/j.ejmech.2019.01.078

Parry, R.; Nishino, S.; Spain, J. Naturally-occurring nitro compounds. Nat. Prod. Rep. 2011, 28, 152-167. https://doi.org/10.1039/C0NP00024H

Mitra, A.; Bhowmik, S.; Ghosh, R. Preferential interaction with c-MYC quadruplex DNA mediates the cytotoxic activity of a nitro-flavone derivative in A375 cells. J. Photochem. Photobiol. 2021, 6, 100033. https://doi.org/10.1016/j.jpap.2021.100033

Inoue, J.; Ikeda, S.; Kanayama, T.; Sato, R. The flavonoid derivative 4′-nitro-6-hydroxyflavone suppresses the activity of HNF4α and stimulates the degradation of HNF4α protein through the activation of AMPK. Biosci. Biotechnol. Biochem. 2017, 81, 1548-1552. https://doi.org/10.1080/09168451.2017.1325316

Malbari, K.D.; Chintakrindi, A.S.; Ganji, L.R.; Gohil, D.J.; Kothari, S.T.; Joshi, M.V.; Kanyalkar, M.A. Structure-aided drug development of potential neuraminidase inhibitors against pandemic H1N1 exploring alternate binding mechanism. Mol. Divers. 2019, 23, 927-951. https://doi.org/10.1007/s11030-019-09919-6

Lü, J.-M.; Qizhi, Y.; Chen C. 3,4-Dihydroxy-5-nitrobenzaldehyde (DHNB) is a potent inhibitor of xanthine oxidase: a potential therapeutic agent for treatment of hyperuricemia and gout. Biochem. Pharmacol. 2013, 86, 1328-1337. https://doi.org/10.1016/j.bcp.2013.08.011

Vdovin V.S.; Lukashov S.S.; Borysenko I.P.; Fesun I.M.; Yarmoluk S.M. The synthesis of combinatorial row of aurone derivatives as potential inhibitors of protein kinase CK2. Ukr. Bioorg. Acta. 2015, 13, 25-31.

Protopopov M.V.; Vdovin V.S.; Starosyla S.A.; Borysenko I.P.; Prykhod'ko A.O.; Lukashov S.S.; Bilokin Y.V.; Bdzhola V.G.; Yarmoluk S.M. Flavone inspired discovery of benzylidenebenzofuran-3(2H)-ones (aurones) as potent inhibitors of human protein kinase CK2. Bioorg. Chem. 2020, 102, 104062. https://doi.org/10.1016/j.bioorg.2020.104062

Popova, A.V.; Bondarenko, S.P.; Frasinyuk, M.S. Aurones: synthesis and properties. Chem. Heterocycl. Comp. 2019, 55, 285-299. https://doi.org/10.1007/s10593-019-02457-x

Turan-Zitouni, G. Fries Synthesis and structure of 2,3-dihydro-3-benzofuranamines. Chimica Acta Turcica. 1985, 13, 403-412.

Enroth, C.; Eger, B.T.; Okamoto, K.; Nishino, T.; Nishino, T.; Pai, E.F. Crystal structures of bovine milk xanthine dehydrogenase and xanthine oxidase: structure-based mechanism of conversion. Proc. Natl. Acad. Sci. U.S.A. 2000, 97, 10723-10728. https://doi.org/10.1073/pnas.97.20.10723

Okamoto, K.; Eger, B.T.; Nishino, T.; Kondo, S.; Pai E.F.; Nishino, T. An extremely potent inhibitor of xanthine oxidoreductase. Crystal structure of the enzyme-inhibitor complex and mechanism of inhibition. J. Biol. Chem. 2003, 278, 1848-1855. https://doi.org/10.1074/jbc.M20830720

Trott, O.; Olson, A.J. AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem. 2010, 31, 455-461. https://doi.org/10.1002/jcc.21334

Kalckar, H.M. Differential spectrophotometry of purine compounds by means of specific enzymes: I. Determination of hydroxypurine compounds. J. Biol. Chem. 1947, 167, 429-443.

Berman, H.M.; Westbrook, J.; Feng, Z.; Gilliland, G.; Bhat, T.N.; Weissig, H.; Shindyalov, I.N.; Bourne, P.E. The Protein Data Bank. Nucleic Acids Res. 2000, 28, 235-242. https://doi.org/10.1093/nar/28.1.235

Huber, R.; Hof, P.; Duarte, R.O.; Moura, J.J.; Moura, I.; Liu, M.Y.; LeGall, J.; Hillw, R.; Archer, M.; Romao, M.J. A structure-based catalytic mechanism for the xanthine oxidase family of molybdenum enzymes. Proc. Natl. Acad. Sci. U.S.A. 1996, 93, 8846-8851. https://doi.org/10.1073/pnas.93.17.8846

MarvinSketch 5.2.4, 2009, ChemAxon [Internet]. Available from: http://www.chemaxon.com (accessed on October 22, 2020).

Hanwell, M.D.; Curtis, D.E.; Lonie, D.C.; Vandermeersch, T.; Zurek, E.; Hutchison, G.R. Avogadro: an advanced semantic chemical editor visualization, and analysis platform. J. Cheminform. 2012, 4, 17. https://doi.org/10.1186/1758-2946-4-17

Sanner, M.F. Python: A programming language for software integration and development. J. Mol. Graph. Model. 1999, 17, 57-61.

Published
2021-12-27
How to Cite
Kobzar, Oleksandr L., Iryna M. Mischenko, Alona V. Tatarchuk, Vasyl S. Vdovin, Sergiy S. Lukashov, Sergiy M. Yarmoluk, and Andriy I. Vovk. 2021. “Nitro-Substituted Aurones As Xanthine Oxidase Inhibitors”. Ukrainica Bioorganica Acta 16 (2), 12-17. https://doi.org/10.15407/bioorganica2021.02.012.

Most read articles by the same author(s)