Ukr.Biochem.J. 2020; Volume 92, Issue 2, Mar-Apr, pp. 21-31

doi: https://doi.org/10.15407/ubj92.02.021

Freezing influences, the exposure of IgG glycans in sera from multiple sclerosis patients

M. Bozhenko1, M. Boichuk1, G. Bila2, T. Nehrych1*, R. Bilyy2*

1Department of Neurology, Danylo Halytsky Lviv National Medical University, Lviv, Ukraine;
2Department of Histology, Cytology and Embryology, Danylo Halytsky Lviv National Medical University, Lviv, Ukraine;
*e-mail: r.bilyy@gmail.com; tnehrych@gmail.com

Received: 08 January 2020; Accepted: 27 March 2020

N-glycan residues attached to Asn297 of the immunoglobulin IgG molecule are responsible for changing­ its structural conformation and are used as markers of many inflammatory diseases. Freezing stabilizes protein structure, while recent solution NMR data showed greatly altered IgG glycan mobility at different­ temperatures. The aim of the current work was to investigate whether freezing sera samples from multiple sclerosis (MS) patients and normal healthy donors (NHD) influences exposure of IgG glycans. The developed lectin immunosorbent assay was used to evaluate exposure of native IgG glycans with fucose-binding AAL lectin and sialic acid-binding SNA lectin. Sera samples were divided and either immediately frozen at -20 °C or stored at 4 °C. Lectin exposure was compared between 5 MS patient groups (n = 75) vs NHD (n = 23) and in paired samples with and without freezing. A significant increase in the exposure of fucose residues on IgG glycans in MS patients, compared to NHD, was observed. This increase was only observed if sera were frozen before analysis. The exposure of sialic acid was decreased in MS vs NHD samples after freezing sera samples. The exposure of core fucose residues and terminal sialic residues differed significantly in paired sera samples after freezing. Combined parameters of fucose and sialic acid exposure on native IgG glycans using frozen sera samples serve as a discriminative marker between MS and NHD. For AAL exposure, the discrimination of MS was characterized by AUROC of 0.906, sensitivity of 76.7% and specificity of 59.0% (P < 0.0001).

Keywords: , , , ,


References:

  1. Li T, DiLillo DJ, Bournazos S, Giddens JP, Ravetch JV, Wang LX. Modulating IgG effector function by Fc glycan engineering. Proc Natl Acad Sci USA. 2017; 114(13):3485–3490. PubMed, PubMedCentral, CrossRef
  2. Magorivska I, Döncző B, Dumych T, Karmash A, Boichuk M, Hychka K, Mihalj M, Szabó M, Csánky E, Rech J, Guttman A, Vari SG, Bilyy R. Glycosylation of random IgG distinguishes seropositive and seronegative rheumatoid arthritis. Autoimmunity. 2018; 51(3):111-117. PubMed, CrossRef
  3.  Knopf J, Magorivska I, Maler JM, Spitzer , Bilyy R, Biermann MHC, Hychka K, Bondt A, Wuhrer M, Toes REM, Schett G, Herrmann M, Muñoz LE. Low amounts of bisecting glycans characterize cerebrospinal fluid-borne IgG. J Neuroimmunol. 2018; 320:19-24. PubMed, CrossRef
  4. Anthony RM, Nimmerjahn F, Ashline DJ, Reinhold VN, Paulson JC, Ravetch JV. Recapitulation of IVIG Anti-Inflammatory Activity With a Recombinant IgG Fc. Science. 2008; 320(5874):373-376. PubMed, PubMedCentral, CrossRef
  5. Biermann MHC, Griffante G, Podolska MJ, Boeltz S, Stürmer J, Muñoz LE, Bilyy R, Herrmann M. Sweet but dangerous – the role of immunoglobulin G glycosylation in autoimmunity and inflammation. Lupus. 2016;25(8):934-942. PubMed, CrossRef
  6. Chen S, Lu C, Gu H, Mehta A, Li J, Romano PB, Horn D, Hooper DC, Bazemore-Walker CR, Block T. Aleuria Aurantia Lectin (AAL)-reactive Immunoglobulin G Rapidly Appears in Sera of Animals Following Antigen Exposure. PLoS One. 2012;7(9):e44422. PubMed, PubMedCentral, CrossRef
  7. Stümer J, Biermann MHC, Knopf J, Magorivska I, Kastbom A, Svärd A, Janko C, Bilyy R, Schett G, Sjöwall C, Herrmann M, Muñoz LE. Altered glycan accessibility on native immunoglobulin G complexes in early rheumatoid arthritis and its changes during therapy. Clin Exp Immunol. 2017; 189(3):372-382. PubMed, PubMedCentral, CrossRef
  8. Barb AW, Prestegard JH. NMR analysis demonstrates immunoglobulin G N-glycans are accessible and dynamic. Nat Chem Biol. 2011; 7(3):147-153. PubMed, PubMedCentral, CrossRef
  9. Meier S, Duus J. Carbohydrate dynamics: Antibody glycans wiggle and jiggle. Nat Chem Biol. 2011; 7(3):131-132. PubMed, CrossRef
  10. Paryzhak S, Dumych T, Mahorivska I, Boichuk M, Bila G, Peshkova S, Nehrych T, Bilyy R. Neutrophil-released enzymes can influence composition of circulating immune complexes in multiple sclerosis. Autoimmunity. 2018; 51(6):297-303. PubMed, CrossRef
  11. Subedi GP, Barb AW. The Structural Role of Antibody N-Glycosylation in Receptor Interactions. Structure. 2015; 23(9):1573-1583. PubMed, PubMedCentral, CrossRef
  12. Polman CH, Reingold SC, Banwell B, Clanet M, Cohen JA, Filippi M, Fujihara K, Havrdova E, Hutchinson M, Kappos L, Lublin FD, Montalban X, O’Connor P, Sandberg-Wollheim M, Thompson AJ, Waubant E, Weinshenker B, Wolinsky JS. Diagnostic criteria for multiple sclerosis: 2010 revisions to the McDonald criteria. Ann Neurol. 2011; 69(2):292-302. PubMed, PubMedCentral, CrossRef
  13. Kurtzke JF. Rating neurologic impairment in multiple sclerosis: an expanded disability status scale (EDSS). Neurology. 1983; 33(11):1444-1452. PubMed, PubMedCentral, CrossRef
  14. Magorivska I, Muñoz LE, Janko C, Dumych T, Rech J, Schett G, Nimmerjahn F, Bilyy R, Herrmann M. Sialylation of anti-histone immunoglobulin G autoantibodies determines their capabilities to participate in the clearance of late apoptotic cells. Clin Exp Immunol. 2016; 184(1):110-117. PubMed, PubMedCentral, CrossRef
  15. Housley WJ, Pitt D, Hafler DA. Biomarkers in multiple sclerosis. Clin Immunol. 2015; 161(1):51-58. PubMed, CrossRef
  16. Katsavos S, Anagnostouli M. Biomarkers in Multiple Sclerosis: An Up-to-Date Overview. Mult Scler Int. 2013; 2013:1-20. PubMed, PubMedCentral, CrossRef
  17. Gajofatto A, Calabrese M, Benedetti MD, Monaco S. Clinical, MRI, and CSF Markers of Disability Progression in Multiple Sclerosis. Dis Markers. 2013; 35(6):687-699. PubMed, PubMedCentral, CrossRef
  18. Tian Z, Zhao X, Li Z, Zhang F, Cao F, Li S, Shao M, Dong Y. Evaluation of myelin basic protein levels with receiver operating characteristic curves for diagnosis of multiple sclerosis. Nan Fang Yi Ke Da Xue Xue Bao. 2009; 29(2):250-252. PubMed
  19. Di Pauli F, Reindl M, Berger T. Biological Markers of Prognostic Value in Multiple Sclerosis. Eur Neurol Rev. 2008; 3(2):94.  CrossRef
  20. Vojdani A, Vojdani E, Cooper E. Antibodies to myelin basic protein, myelin oligodendrocytes peptides, alpha-beta-crystallin, lymphocyte activation and cytokine production in patients with multiple sclerosis. J Intern Med. 2003; 254(4):363-374. PubMed, CrossRef

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License.