doi: 10.15389/agrobiology.2016.6.788eng

UDC 636.2:575.174:575.2:51-76

Acknowledgements:
We thank Department of Animal Husbandry and Breeding (Ministry of Agriculture of the Russian Federation), Dr V.S. Matyukov (Komi Republic Research Institute of Agriculture) and Dr D.K. Nekrasov (Ivanovo State Academy of Agriculture) for assistance in collecting samples.
Supported by Russian Science Foundation, project №14-36-00039

 

STUDY OF GENETIC DIVERSITY AND POPULATION STRUCTURE OF FIVE RUSSIAN CATTLE BREEDS USING WHOLE-GENOME SNP ANALYSIS

N.A. Zinovieva1, A.V. Dotsev1, A.A. Sermyagin1, K. Wimmers2,
H. Reyer2, J. Sölkner3,T.E. Deniskova1, G. Brem1, 4

1L.K. Ernst All-Russian Research Institute of Animal Husbandry, Federal Agency of Scientific Organizations, 60, pos. Dubrovitsy, Podolsk District, Moscow Province, 142132 Russia, e-mail n_zinovieva@mail.ru, asnd@mail.ru, alex_sermyagin85@mail.ru;
2Institute of Genome Biology, Leibniz Institute for Farm Animal Biology (FBN), Mecklenburg-Vorpommern, 18196 Dummerstorf, Germany, e-mail wimmers@fbn-dummerstorf.de, reyer@fbn-dummerstorf.de;
3Division of Livestock Sciences, University of Natural Resources and Life Sciences, Augasse 2-6, A-1090, Vienna, Austria,
e-mail johann.soelkner@boku.ac.at;
4Institut für Tierzucht und Genetik, University of Veterinary Medicine (VMU), Veterinärplatz, A-1210, Vienna, Austria,
e-mail gottfried.brem@agrobiogen.de

Received September 26, 2016

 

With the publication of the complete sequence of a cattle genome, it became possible to trace the history of breed origins and to evaluate genetic relationships between modern breeds, based on the results of genome-wide SNP screening. Whilst numerous studies have been undertaken to characterize the commercial breeds and some local cattle breeds of Europe, North America, Asia and Africa at whole-genome level, little is known about genetic differences, relationships and population genetic structure of the Russian native cattle breeds. The aim of our work was to study the genetic diversity and population structure of five locally-developed Russian cattle breeds, based on genome-wide  single nucleotide polymorphisms (SNPs) generated using Illumina Bovine SNP50 BeadChips (Illumina, San Diego, CA, USA). In total, 116 samples (sperm or tissue) collected from five breeds were analyzed, including Bestuzhev (BEST, n = 27), Kholmogor (KHLM, n = 25), Kostromsky (KSTR, n = 20), Red Gorbatov (RGBT, n = 23) and Yaroslavl breeds (YRSL, n = 21). Samples of Holstein cattle (HLST, n = 29) were used for comparison. Quality filtering of genetic markers was performed in PLINK v 1.07. Data processing was performed using software PLINK 1.07, HP-Rare 1.1, STRUCTURE, ver. 2.3.4, Phylip, ver. 3.695, FigTree 1.4.2, Arlequin suite, ver. 3.5.2.2 and R pocket. The final set of markers passed through the quality control and selected for further analysis included 35874 SNPs. Average heterozygosity within breeds ranged from 0.378 in BEST to 0.390 in KHLM and was higher comparing to HLST (0.377). Allelic richness was ranging from 1.914±0.001 in KSTR to 1.955±0.001 in BEST. A slight heterozygote excess was detected in all breeds studied (FIS from -0.015 in BEST to -0.054 in KHLM). The multidimensional scaling (MDS) showed the presence of non-overlapping breed specific clusters, whereas the first principal component (PC1) accounted for 5.46 % and the second principal component (PC2) was responsible for 5.05 % of the genotypic variance. Phylogenetic analysis based on parsimony method grouped individuals into six clusters according to their breeds. The STRUCTURE analyses supported the assumption that the ancestry of the locally developed Russian cattle breeds is distinct from Holsteins and Holstein-related breeds. The highest ΔK showing the assumed number of populations was observed for k = 6. At k = 6, the genetic structure is in agreement with breed origin of individuals: Q1/6 = 0.855±0.018 for BEST, Q2/6 = 0.818±0.029 for KHLM, Q3/6 = 0.923±0.015 for KSTR, Q4/6 = 0.816±0.027 for RGBT, Q5/6 = 0.873±0.031 for YRSL and Q6/6 = 0.935±0.014 for HLST. Analysis of molecular variance (AMOVA) showed highly significant results for genetic differentiation (p < 0.001) in studied breeds. AMOVA revealed that most of the genetic variation in cattle breeds was found within populations (91.2 %), and less among populations (8.8 %).  The emerging structure of the phylogenetic tree constructed on the Nei genetic distances, is in full concordance with the historical origin of breeds and confirms the MDS and STRUCTURE results. Thus, using the method of genome-wide SNP studies we were able for the first time to study the population structure and genealogical relationships among the five Russian cattle breeds. The received information is the first step towards the evaluation of the value of these breeds regarding their conservation and usage in the agricultural production of the future.

Keywords: Russian cattle breeds, whole-genome SNP screening, biodiversity.

 

Full article (Rus)

Full text (Eng)

 

REFERENCES

  1. Notter D.R. The importance of genetic diversity in livestock populations of the future. J. Anim. Sci., 1999, 77(1):  61-69 CrossRef
  2. Ajmone-Marsan P., GLOBALDIV Consortium. A global view of livestock biodiversity and conservation—GLOBALDIV. Anim. Genet., 2010, 41(s1): 1-5 CrossRef
  3. Liskun E.F. Russkie otrod'ya krupno-rogatogo skota [Landraces of Russian cattle]. Moscow, 1928 (in Russ.).
  4. Diomidov A.M., Zhirkovich E.F. Razvedenie porod krupnogo rogatogo skota [Cattle breeding]. Moscow-Leningrad, 1934 (in Russ.).
  5. Armfel'd A.A. Krupnyi rogatyi skot v usloviyakh russkikh khozyaistv [Cattel breeding in Russia]. St. Petersburg, 1904 (in Russ.).
  6. Liskun E.F. Kratkie spravochnye svedeniya o zhivotnykh nekotorykh russkikh khozyaistv [Brief view of the animals from some farms of Russia]. Petrograd, 1915 (in Russ.).
  7. Pridorogin M.I. Krupnyi rogatyi skot. Vazhneishie porody [Cattle: the most important breeds]. Moscow, 1919 (in Russ.).
  8. Tooke W. View of the Russian empire, during the reign of Catharine the second, and to the close of the eighteens century. The Breeding of Sattle, 1800, 3: 85-129.
  9. Dmitriev N.I. Porody skota po stranam mira [Cattle breeds — a geography]. Leningrad, 1978 (in Russ.).
  10. Ernst L.K., Dmitriev N.G., Paronyan I.A. Geneticheskie resursy sel'skokhozyaistvennykh zhivotnykh v Rossii i sopredel'nykh stranakh [Genetic diversity of farm animals in Russia and neighboring countries]. St. Petersburg, 1994 (in Russ.).
  11. Spravochnik porod i tipov sel'skokhozyaistvennykh zhivotnykh, razvodimykh v Rossiiskoi Federatsii /Pod redaktsiei I.M. Dunina, A.G. Dankverta [Breeds and types of farm animals in the Russian Federation: a directory. I.M. Dunin, A.G. Dankvert (eds.)]. Moscow, 2013 (in Russ.).
  12. Muir W.M., Wong G.K.-S., Zhang Y., Wang J., Groenen M.A.M., Crooijmansd R.P.M.A., Megensd H.-J., Zhange H., Okimotof R., Vereijkeng A., Jungeriusg A., Albersg G.A.A., Lawley C.T., Delany M.E., MacEachern S., Cheng H.H. Genome-wide assessment of worldwide chicken SNP genetic diversity indicates significant absence of rare alleles in commercial breeds. PNAS USA, 2008, 105(45): 17312-17317 CrossRef
  13. Dolmatova I.Yu., Zinovieva N.A., Gorelov P.V., Il’yasov A.D., Gladyr E.A., Traspov A.A., Sel’tsov V.I. Characteristics of the allele pool of the Bashkiria population of Simmental cattle using microsatellites. Agricultural Biology, 2011, 6: 70-74 (in Engl.).
  14. Yang W., Kang X., Yang Q., Lin Y., Fang M. Review on the development of genotyping methods for assessing farm animal diversity. Journal of Animal Science and Biotechnology, 2013, 4: 2-6 CrossRef
  15. Loftus R.T., MacHugh D.E., Bradley D.G., Sharp P.M., Cunningham E.P. Evidence for two independent domestications of cattle. PNAS USA, 1994, 91(7): 2757-2761 CrossRef
  16. Loftus R.T., MacHugh D.E., Ngere L.O., Balain D.S., Badi A.M., Bradley D.G., Cunningham E.P. Mitochondrial genetic variation in European, African and Indian cattle populations. Anim. Genet., 1994, 25: 265-271 CrossRef
  17. Bradley D.G., MacHugh D.E., Cunningham P., Loftus R.T. Mitochondrial diversity and the origins of African and European cattle. PNAS USA, 1996, 93: 5131-5135 CrossRef
  18. MacHugh D.E., Shriver M.D., Loftus R.T., Cunningham P., Bradley D.G. Microsatellite DNA variation and the evolution, domestication and phylogeography of taurine and zebu cattle (Bos taurus and Bos indicus). Genetics, 1997, 146: 1071-1086.
  19. Loftus R.T., Ertugrul O., Harba A.H., El-Barody M.A.A., MacHugh D.E. Park S.D.E., Bradley D.G. A microsatellite survey of cattle from a centre of origin: the Near East. Mol. Ecol., 1999, 8: 2015-2022 CrossRef
  20. Edwards C.J., Baird J.F., MacHugh D.E. Taurine and zebu admixture in Near Eastern cattle: a comparison of mitochondrial, autosomal and Y-chromosomal data. Anim. Genet., 2007, 38: 520-524 CrossRef
  21. Cymbron T., Freeman A.R., Isabel Malheiro M., Vigne J.D., Bradley D.G. Microsatellite diversity suggests different histories for Mediterranean and Northern European cattle populations. Proceedings of the Royal Society B: Biological Sciences, 2005, 272(1574): 1837-1843 CrossRef
  22. Gorelov P.V., Kol’tsov D.N., Zinovieva N.A., Gladyr’ E.A. The comparative analysis of blood groups and microsatellites in characteristics of new cattle types of brown Swiss and Sychevskaja breeds. Agricultural Biology, 2011, 6: 37-40 (in Engl.).
  23. Gladyr' E.A., Zinov'eva N.A., Bagirov V.A., Amirshoev F.S., Volkova V.V., Klenovitskii P.M., Karpov A.P., Ernst L.K. Dostizheniya nauki i tekhniki APK, 2012, 8: 58-62 (in Russ.).
  24. Kiseleva T.Yu., Kantanen J., Vorobyov N.I., Podoba B.E., Terletsky V.P. Linkage disequilibrium analysis for microsatellite loci in six cattle breeds. Russian Journal of Genetics, 2014, 50(4): 406-414 CrossRef
  25. Elsik C.G., Bovine Genome Sequencing and Analysis Consortium. The genome sequence of taurine cattle: A window to ruminant biology and evolution. Science, 2009, 324(5926): 522-528 CrossRef
  26. Zimin A.V., Delcher A.L., Florea L., Kelley D.R., Schatz M.C., Puiu D., Hanrahan F., Pertea G., Van Tassell C.P., Sonstegard T.S., Marçais G., Roberts M., Subramanian P., Yorke J.A., Salzberg S.L. A whole-genome assembly of the domestic cow, Bos taurus. Genome Biol., 2009, 10(4): R42 CrossRef
  27. Decker J.E., Pires J.C., Contant G.C., McKay S.D., Heaton M.P., Chen K., Cooper A., Vilkki J., Seabury C.M., Caetano A.R., Johnson G.S., Brenneman R.A., Hanotte O., Eggert L.S., Wiener P., Kim J.-J., Kim K.S., Sonstegard T.S., Van Tassell C.P., Neibergs H.L., McEwan J.C., Bra-
    uning R., Coutinho L.L., Babar M.E., Wilson G.A., McClure M.C., Rolf M.M., Kim J.W., Schnabel R.D., Taylor J.F. Resolving the evolution of extant and extinct ruminants with high-throughput phylogenomics. PNAS USA, 2009, 106(44): 18644-18649 CrossRef
  28. Kuehn L.A., Keele J.W., Bennett G.L., McDaneld T.G., Smith T.P., Snelling W.M., Sonstegard T.S., Thallman R.M. Predicting breed composition using breed frequencies of 50,000 markers from the US Meat Animal Research Center 2,000 Bull Project. J. Anim. Sci., 2011, 89(6): 1742-1750 CrossRef
  29. McTavish E.J., Decker J.E., Schnabel R.D., Taylor J.F., Hillis D.M. New World cattle show ancestry from multiple independent domestication events. PNAS USA, 2013, 110(15): E1398-E1406 CrossRef
  30. Decker J.E., McKay S.D., Rolf M.M., Kim J., Molina Alcalá A., Sonstegard T.S., Hanotte O., Götherström A., Seabury C.M., Praharani L.,
    Babar M.E., Regitano L.C.A., Yildiz M.A., Heaton M.P., Wan-Sheng L., Lei C.-Z., Reecy J.M., Saif-Ur-Rehman M., Schnabel R.D., Taylor J.F. Worldwide patterns of ancestry, divergence, and admixture in domesticated cattle. PLoS Genetics, 10(3): e1004254 CrossRef
  31. Decker J.E., Taylor J.F., Kantanen J., Millbrooke A., Schnabel R.D., Alexander L.J., MacNeil M.D. Origins of cattle on Chirikof Island, Alaska, elucidated from genome-wide SNP genotypes. Heredity, 2016, 116(6): 502-505 CrossRef
  32. Purcell S., Neale B., Todd-Brown K., Thomas L., Ferreira M.A.R., Bender D., Maller J., Sklar P., de Bakker P.I., Daly M.J., Sham P.C. PLINK: a tool set for whole-genome association and population-based linkage analyses. Am. J. Hum. Genet., 2007, 81: 559-575 CrossRef
  33. Fan J.B., Oliphant A., Shen R., Kermani B.G., Garcia F., Gunderson K.L., Hansen M., Steemers F., Butler S.L., Deloukas P., Galver L., Hunt S., McBride C., Bibikova M., Rubano T., Chen J., Wickham E., Doucet D., Chang W., Campbell D., Zhang B., Kruglyak S., Bentley D., Haas J., Rigault P., Zhou L., Stuelpnagel J., Chee M.S. Highly parallel SNP genotyping. Cold Spring Harbor Symposia on Quantitative Biology, 2003, 68: 69-78.
  34. Kalinowski S.T. HP RARE 1.0: a computer program for performing rarefaction on measures of allelic richness. Mol. Ecol. Notes, 2005, 5: 187-189 CrossRef
  35. R Development Core Team. R: A language and environment for statistical computing. 2009. R Foundation for statistical computing. Vienna, Austria, 2005 (ISBN 3-900051-07-0). Available http://www.Rproject.org. No date.
  36. Pritchard J.K., Stephens M., Donnelly P. Inference of population structure using multilocus genotype data. Genetics, 2000, 155(2): 945-959.
  37. Felsenstein J. PHYLIP (Phylogeny Inference Package) version 3.5c. Distributed by the author. Department of Genetics, University of Washington, Seattle, 1993.
  38. FigTree. Available http://tree.bio.ed.ac.uk/software/figtree/. No date.
  39. Nei M. Genetic distance between populations. Am. Nat., 1972, 106(949): 283-292.
  40. Pembleton L.W., Cogan N.O.I., Forster J.W. StAMPP: an R package for calculation of genetic differentiation and structure of mixed-ploidy level populations. Mol. Ecol. Resour., 2013, 13(5): 946-952 CrossRef
  41. Weir B.S., Cockerham C.C. Estimating F-Statistics for the analysis of population structure. Evolution, 1984, 38(6): 1358-1370 CrossRef
  42. Excoffier L., Lischer H.E.L. Arlequin suite ver 3.5: A new series of programs to perform population genetics analyses under Linux and Windows. Mol. Ecol. Resour., 2010, 10: 564-567 CrossRef
  43. McVean G. A genealogical interpretation of principal components analysis. PLoS Genetics, 2009, 5(10): e1000686 CrossRef
  44. Liskun E.F. Otechestvennye porody krupnogo rogatogo skota [Cattle — Domestic breeds]. Moscow, 1949 (in Russ.).
  45. The Bovine HapMap Consortium. Genome-wide survey of SNP variation uncovers the genetic structure of cattle breeds. Science,2009, 324: 528-532 CrossRef
  46. Makina S.O., Muchadeyi F.C., Marle-Köster E., Mac Neil M.D., Maiwashe A. Genetic diversity and population structure among six cattle breeds in South Africa using a whole genome SNP panel. Frontiers in Genetics, 2014, 5: 333 CrossRef
  47. Labinov V.V. Rezul'taty i osnovnye napravleniya sovershenstvovaniya selektsionno-plemennoi raboty v molochnom skotovodstve Rossiiskoi Federatsii. Ministerstvo sel'skogo khozyaistva RF [The achievements and improvement of cattle breeding in the Russian Federation. Ministry of Agriculture of the Russian Federation. Available http://www.mcx.ru/documents/file_document/v7_show/33370.133.htm. Accessed May 28, 2016.
  48. Groeneveld L.F., Lenstra J.A., Eding H., Toro M.A., Scherf B., Pilling D., Negrini R., Finlay E.K., Jianlin H., Groeneveld E., Weigend S., The GLO-
    BALDIV Consortium. Genetic diversity in farm animals — a review. Anim. Genet., 2010, 41: 6-31 CrossRef
  49. Katmakov P.S., Gavrilenko V.P., Bushov A.V., Sten'kin N.I. Vestnik Ul'yanovskoi GSKHA, 2014, 1(25): 126-132 (in Russ.).
  50. Moser C., Reiter M. Die Rinderrasse der Tux-Zillertaler — Ein Stück Tiroler Kultur. Verlag Edition Tirol, Reith im Alpbachtal, 1996.
  51. Tux Zillertaler. Available http://en.zar.at/Cattle_breeding_in_Austria/Cattle_breeds/Additio-nal_Breeds/Tux_Zillertaler.html. No date.

back