Skip to main content
  • Review
  • Educational Series In Congenital Heart Disease
  • Open access
  • Published:

Cardiovascular MRI and CT in congenital heart disease

Abstract

Cardiac MRI and CT are increasingly used in the diagnosis and management of patients with congenital heart disease as an imaging adjunct to echocardiography. The benefits and limitations of both modalities are highlighted, with a focus on the anatomical, functional and haemodynamic information that can be gained from the different modalities. Deciding on the imaging modality of choice must also take into account patient factors such as age, compliance, the type of congenital heart disease, and previous procedures. Future developments in CT and MRI are also discussed.

References

  1. Valente AM, Cook S, Festa P, Ko HH, Krishnamurthy R, Taylor AM, Warnes CA, Kreutzer J & Geva T. Multimodality imaging guidelines for patients with repaired tetralogy of Fallot: a report from the American Society of Echocardiography: developed in collaboration with the Society for Cardiovascular Magnetic Resonance and the Society for Pediatric Radiology. Journal of the American Society of Echocardiography 2014 111–141. https://doi.org/10.1016/j.echo.2013.11.009)

    Google Scholar 

  2. Cohen MS, Eidem BW, Cetta F, Fogel MA, Frommelt PC, Ganame J, Han BK, Kimball TR, Johnson RK, Mertens L, et al. Multimodality imaging guidelines of patients with transposition of the great arteries: a report from the American Society of Echocardiography developed in collaboration with the Society for Cardiovascular Magnetic Resonance and the Society of Cardiovascular Computed Tomography. Journal of the American Society of Echocardiography 2016 571–621. https://doi.org/10.1016/j.echo.2016.04.002)

    Google Scholar 

  3. Di Salvo G, Miller O, Babu Narayan S, Li W, Budts W, Valsangiacomo Buechel ER, Frigiola A, van den Bosch AE, Bonello B, Mertens L, et al. Imaging the adult with congenital heart disease: a multimodality imaging approach-position paper from the EACVI. European Heart Journal: Cardiovascular Imaging 2018 1077–1098. https://doi.org/10.1093/ehjci/jey102)

    Google Scholar 

  4. D’Alto M, Dimopoulos K, Budts W, Diller GP, Di Salvo G, Dellegrottaglie S, Festa P, Scognamiglio G, Rea G, Ait Ali L, et al. Multimodality imaging in congenital heart disease-related pulmonary arterial hypertension. Heart 2016 910–918. https://doi.org/10.1136/heartjnl-2015-308903)

    Google Scholar 

  5. Luijnenburg SE, Robbers-Visser D, Moelker A, Vliegen HW, Mulder BJ & Helbing WA. Intra-observer and interobserver variability of biventricular function, volumes and mass in patients with congenital heart disease measured by CMR imaging. International Journal of Cardiovascular Imaging 2010 57–64. https://doi.org/10.1007/s10554-009-9501-y)

    Google Scholar 

  6. Fratz S, Chung T, Greil GF, Samyn MM, Taylor AM, Valsangiacomo Buechel ER, Yoo SJ & Powell AJ. Guidelines and protocols for cardiovascular magnetic resonance in children and adults with congenital heart disease: SCMR expert consensus group on congenital heart disease. Journal of Cardiovascular Magnetic Resonance 2013 51. https://doi.org/10.1186/1532-429X-15-51)

    Google Scholar 

  7. Valsangiacomo Buechel ER, Grosse-Wortmann L, Fratz S, Eichhorn J, Sarikouch S, Greil GF, Beerbaum P, Bucciarelli-Ducci C, Bonello B, Sieverding L, et al. Indications for cardiovascular magnetic resonance in children with congenital and acquired heart disease: an expert consensus paper of the Imaging Working Group of the AEPC and the Cardiovascular Magnetic Resonance Section of the EACVI. European Heart Journal: Cardiovascular Imaging 2015 281–297. https://doi.org/10.1093/ehjci/jeu129)

    Google Scholar 

  8. Bonnemains L, Raimondi F & Odille F. Specifics of cardiac magnetic resonance imaging in children. Archives of Cardiovascular Diseases 2016 143–149. https://doi.org/10.1016/j.acvd.2015.11.004)

    Google Scholar 

  9. Vassiliou VS, Cameron D, Prasad SK & Gatehouse PD. Magnetic resonance imaging: physics basics for the cardiologist. JRSM Cardiovascular Disease 2018 2048004018772237. https://doi.org/10.1177/2048004018772237)

    Google Scholar 

  10. Schievano S, Capelli C, Young C, Lurz P, Nordmeyer J, Owens C, Bonhoeffer P & Taylor AM. Four-dimensional computed tomography: a method of assessing right ventricular outflow tract and pulmonary artery deformations throughout the cardiac cycle. European Radiology 2011 36–45. https://doi.org/10.1007/s00330-010-1913-5)

    Google Scholar 

  11. Winter MM, Bernink FJ, Groenink M, Bouma BJ, van Dijk AP, Helbing WA, Tijssen JG & Mulder BJ. Evaluating the systemic right ventricle by CMR: the importance of consistent and reproducible delineation of the cavity. Journal of Cardiovascular Magnetic Resonance 2008 40. https://doi.org/10.1186/1532-429X-10-40)

    Google Scholar 

  12. Dardeer AM, Hudsmith L, Wesolowski R, Clift P & Steeds RP. The potential role of feature tracking in adult congenital heart disease: advantages and disadvantages in measuring myocardial deformation by cardiovascular magnetic resonance. Journal of Congenital Cardiology 2018 3. https://doi.org/10.1186/s40949-018-0015-0)

    Google Scholar 

  13. Orwat S, Diller GP, Kempny A, Radke R, Peters B, Kuhne T, Boethig D, Gutberlet M, Dubowy KO, Beerbaum P, et al. Myocardial deformation parameters predict outcome in patients with repaired tetralogy of Fallot. Heart 2016 209–215. https://doi.org/10.1136/heartjnl-2015-308569)

    Google Scholar 

  14. Moon TJ, Choueiter N, Geva T, Valente AM, Gauvreau K & Harrild DM. Relation of biventricular strain and dyssynchrony in repaired tetralogy of Fallot measured by cardiac magnetic resonance to death and sustained ventricular tachycardia. American Journal of Cardiology 2015 676–680. https://doi.org/10.1016/j.amjcard.2014.12.024)

    Google Scholar 

  15. Beerbaum P, Korperich H, Barth P, Esdorn H, Gieseke J & Meyer H. Noninvasive quantification of left-to-right shunt in pediatric patients: phase-contrast cine magnetic resonance imaging compared with invasive oximetry. Circulation 2001 2476–2482. https://doi.org/10.1161/01.cir.103.20.2476)

    Google Scholar 

  16. Grosse-Wortmann L, Al-Otay A & Yoo SJ. Aortopulmonary collaterals after bidirectional cavopulmonary connection or Fontan completion: quantification with MRI. Circulation: Cardiovascular Imaging 2009 219–225. https://doi.org/10.1161/CIRCIMAGING.108.834192)

    Google Scholar 

  17. Whitehead KK, Gillespie MJ, Harris MA, Fogel MA & Rome JJ. Noninvasive quantification of systemic-to-pulmonary collateral flow: a major source of inefficiency in patients with superior cavopulmonary connections. Circulation: Cardiovascular Imaging 2009 405–411. https://doi.org/10.1161/CIRCIMAGING.108.832113)

    Google Scholar 

  18. Dyverfeldt P, Bissell M, Barker AJ, Bolger AF, Carlhäll CJ, Ebbers T, Francios CJ, Frydrychowicz A, Geiger J, Giese D, et al. 4D flow cardiovascular magnetic resonance consensus statement. Journal of Cardiovascular Magnetic Resonance 2015 72. https://doi.org/10.1186/s12968-015-0174-5)

    Google Scholar 

  19. Rathod RH, Powell AJ & Geva T. Myocardial fibrosis in congenital heart disease. Circulation Journal 2016 1300–1307. https://doi.org/10.1253/circj.CJ-16-0353)

    Google Scholar 

  20. Babu-Narayan SV, Goktekin O, Moon JC, Broberg CS, Pantely GA, Pennell DJ, Gatzoulis MA & Kilner PJ. Late gadolinium enhancement cardiovascular magnetic resonance of the systemic right ventricle in adults with previous atrial redirection surgery for transposition of the great arteries. Circulation 2005 2091–2098. https://doi.org/10.1161/01.CIR.0000162463.61626.3B)

    Google Scholar 

  21. Babu-Narayan SV, Kilner PJ, Li W, Moon JC, Goktekin O, Davlouros PA, Khan M, Ho SY, Pennell DJ & Gatzoulis MA. Ventricular fibrosis suggested by cardiovascular magnetic resonance in adults with repaired tetralogy of Fallot and its relationship to adverse markers of clinical outcome. Circulation 2006 405–413. https://doi.org/10.1161/CIRCULATIONAHA.105.548727)

    Google Scholar 

  22. Rydman R, Gatzoulis MA, Ho SY, Ernst S, Swan L, Li W, Wong T, Sheppard M, McCarthy KP, Roughton M, et al. Systemic right ventricular fibrosis detected by cardiovascular magnetic resonance is associated with clinical outcome, mainly new-onset atrial arrhythmia, in patients after atrial redirection surgery for transposition of the great arteries. Circulation: Cardiovascular Imaging 2015 e002628. https://doi.org/10.1161/CIRCIMAGING.114.002628)

    Google Scholar 

  23. Rathod RH, Prakash A, Powell AJ & Geva T. Myocardial fibrosis identified by cardiac magnetic resonance late gadolinium enhancement is associated with adverse ventricular mechanics and ventricular tachycardia late after Fontan operation. Journal of the American College of Cardiology 2010 1721–1728. https://doi.org/10.1016/j.jacc.2009.12.036)

    Google Scholar 

  24. Gagliardi MG, Bevilacqua M, Di Renzi P, Picardo S, Passariello R & Marcelletti C. Usefulness of magnetic resonance imaging for diagnosis of acute myocarditis in infants and children, and comparison with endomyocardial biopsy. American Journal of Cardiology 1991 1089–1091. https://doi.org/10.1016/0002-9149(91)90501-b)

    Google Scholar 

  25. Raimondi F, Iserin F, Raisky O, Laux D, Bajolle F, Boudjemline Y, Boddaert N & Bonnet D. Myocardial inflammation on cardiovascular magnetic resonance predicts left ventricular function recovery in children with recent dilated cardiomyopathy. European Heart Journal: Cardiovascular Imaging 2015 756–762. https://doi.org/10.1093/ehjci/jev002)

    Google Scholar 

  26. Banka P, Robinson JD, Uppu SC, Harris MA, Hasbani K, Lai WW, Richmond ME, Fratz S, Jain S, Johnson TR, et al. Cardiovascular magnetic resonance techniques and findings in children with myocarditis: a multicenter retrospective study. Journal of Cardiovascular Magnetic Resonance 2015 96. https://doi.org/10.1186/s12968-015-0201-6)

    Google Scholar 

  27. Beroukhim RS, Prakash A, Valsangiacomo Buechel ER, Cava JR, Dorfman AL, Festa P, Hlavacek AM, Johnson TR, Keller MS, Krishnamurthy R, et al. Characterization of cardiac tumors in children by cardiovascular magnetic resonance imaging: a multicenter experience. Journal of the American College of Cardiology 2011 1044–1054. https://doi.org/10.1016/j.jacc.2011.05.027)

    Google Scholar 

  28. Raimondi F, Aquaro GD, De Marchi D, Sandrini C, Khraiche D, Festa P, Ait Ali L, Boddaert N & Bonnet D. Cardiac magnetic resonance myocardial perfusion after arterial switch for transposition of great arteries. JACC: Cardiovascular Imaging 2018 778–779. https://doi.org/10.1016/j.jcmg.2017.07.015)

    Google Scholar 

  29. Muthalaly RG, Nerlekar N, Ge Y, Kwong RY & Nasis A. MRI in patients with cardiac implantable electronic devices. Radiology 2018 281–292. https://doi.org/10.1148/radiol.2018180285)

    Google Scholar 

  30. Lloyd DFA, Pushparajah K, Simpson JM, van Amerom JFP, van Poppel MPM, Schulz A, Kainz B, Deprez M, Lohezic M, Allsop J, et al. Three-dimensional visualisation of the fetal heart using prenatal MRI with motion-corrected slice-volume registration: a prospective, single-centre cohort study. Lancet 2019 1619–1627. https://doi.org/10.1016/S0140-6736(18)32490-5)

    Google Scholar 

  31. Seed M, van Amerom JF, Yoo SJ, Al Nafisi B, Grosse-Wortmann L, Jaeggi E, Jansz MS & Macgowan CK. Feasibility of quantification of the distribution of blood flow in the normal human fetal circulation using CMR: a cross-sectional study. Journal of Cardiovascular Magnetic Resonance 2012 79. https://doi.org/10.1186/1532-429X-14-79)

    Google Scholar 

  32. Saul D, Degenhardt K, Iyoob SD, Surrey LF, Johnson AM, Johnson MP, Rychik J & Victoria T. Hypoplastic left heart syndrome and the nutmeg lung pattern in utero: a cause and effect relationship or prognostic indicator? Pediatric Radiology 2016 483–489. https://doi.org/10.1007/s00247-015-3514-6)

    Google Scholar 

  33. Razavi R, Hill DL, Keevil SF, Miquel ME, Muthurangu V, Hegde S, Rhode K, Barnett M, van Vaals J, Hawkes DJ, et al. Cardiac catheterisation guided by MRI in children and adults with congenital heart disease. Lancet 2003 1877–1882. https://doi.org/10.1016/S0140-6736(03)14956-2)

    Google Scholar 

  34. Muthurangu V, Taylor A, Andriantsimiavona R, Hegde S, Miquel ME, Tulloh R, Baker E, Hill DL & Razavi RS. Novel method of quantifying pulmonary vascular resistance by use of simultaneous invasive pressure monitoring and phase-contrast magnetic resonance flow. Circulation 2004 826–834. https://doi.org/10.1161/01.CIR.0000138741.72946.84)

    Google Scholar 

  35. Pushparajah K, Chubb H & Razavi R. MR-guided cardiac interventions. Topics in Magnetic Resonance Imaging 2018 115–128. https://doi.org/10.1097/RMR.0000000000000156)

    Google Scholar 

  36. Crean A. Cardiovascular MR and CT in congenital heart disease. Heart 2007 1637–1647. https://doi.org/10.1136/hrt.2006.104729)

    Google Scholar 

  37. National Institute for Health and Care Excellence. New generation cardiac CT scanners (Aquilion ONE, Brilliance iCT, Discovery CT750 HD and Somatom Definition Flash) for cardiac imaging in people with suspected or known coronary artery disease in whom imaging is difficult with earlier generation CT scanners. London, UK: NICE, 2017. (available at: https://www.nice.org.uk/guidance/dg3/resources)

    Google Scholar 

  38. Stadler A, Schima W, Ba-Ssalamah A, Kettenbach J & Eisenhuber E. Artifacts in body MR imaging: their appearance and how to eliminate them. European Radiology 2007 1242–1255. https://doi.org/10.1007/s00330-006-0470-4)

    Google Scholar 

  39. Solie CJ, Mohr NM & Runde DP. Can multidetector computed tomography rule out left atrial thrombus in patients with atrial fibrillation? Annals of Emergency Medicine 2018 480–481. https://doi.org/10.1016/j.annemergmed.2017.09.012)

    Google Scholar 

  40. Korperich H, Muller K, Barth P, Gieseke J, Haas N, Schulze-Neick I, Burchert W, Kececioglu D & Laser KT. Differentiation of impaired from preserved hemodynamics in patients with fontan circulation using real-time phase-velocity cardiovascular magnetic resonance. Journal of Thoracic Imaging 2017 159–168. https://doi.org/10.1097/RTI.0000000000000261)

    Google Scholar 

  41. Blum MB, Schmook M, Schernthaner R, Edelhauser G, Puchner S, Lammer J & Funovics MA. Quantification and detectability of in-stent stenosis with CT angiography and MR angiography in arterial stents in vitro. American Journal of Roentgenology 2007 1238–1242. https://doi.org/10.2214/AJR.07.2501)

    Google Scholar 

  42. Gherardi GG, Iball GR, Darby MJ & Thomson JD. Cardiac computed tomography and conventional angiography in the diagnosis of congenital cardiac disease in children: recent trends and radiation doses. Cardiology in the Young 2011 616–622. https://doi.org/10.1017/S1047951111000485)

    Google Scholar 

  43. Hoffmann A, Engelfriet P & Mulder B. Radiation exposure during follow-up of adults with congenital heart disease. International Journal of Cardiology 2007 151–153. https://doi.org/10.1016/j.ijcard.2006.07.012)

    Google Scholar 

  44. Orwat S, Diller GP & Baumgartner H. Imaging of congenital heart disease in adults: choice of modalities. European Heart Journal Cardiovascular Imaging 2014 6–17. https://doi.org/10.1093/ehjci/jet124)

    Google Scholar 

  45. Goldman LW. Principles of CT and CT technology. Journal of Nuclear Medicine Technology 2007 115–128; quiz 129–130. https://doi.org/10.2967/jnmt.107.042978)

    Google Scholar 

  46. Hsiao EM, Rybicki FJ & Steigner M. CT coronary angiography: 256-slice and 320-detector row scanners. Current Cardiology Reports 2010 68–75. https://doi.org/10.1007/s11886-009-0075-z)

    Google Scholar 

  47. Nie P, Wang X, Cheng Z, Ji X, Duan Y & Chen J. Accuracy, image quality and radiation dose comparison of high-pitch spiral and sequential acquisition on 128-slice dual-source CT angiography in children with congenital heart disease. European Radiology 2012 2057–2066. https://doi.org/10.1007/s00330-012-2479-1)

    Google Scholar 

  48. Duan Y, Wang X, Cheng Z, Wu D & Wu L. Application of prospective ECG-triggered dual-source CT coronary angiography for infants and children with coronary artery aneurysms due to Kawasaki disease. British Journal of Radiology 2012 e1190–e1197. https://doi.org/10.1259/bjr/18174517)

    Google Scholar 

  49. Valentin J & International Commission on Radiation Protection. Managing patient dose in multi-detector computed tomography(MDCT). ICRP Publication 102. Annals of the ICRP 2007 1–79, iii.

    Google Scholar 

  50. Chao SP, Leu JG, Law WY, Kuo CJ & Shyu KG. Image quality of 256-slice computed tomography for coronary angiography. Acta Cardiologica Sinica 2013 444–450.

    Google Scholar 

  51. Silverman PM, Kalender WA & Hazle JD. Common terminology for single and multislice helical CT. American Journal of Roentgenology 2001 1135–1136. https://doi.org/10.2214/ajr.176.5.1761135)

    Google Scholar 

  52. Ranallo FN & Szczykutowicz T. The correct selection of pitch for optimal CT scanning: avoiding common misconceptions. Journal of the American College of Radiology 2015 423–424. https://doi.org/10.1016/j.jacr.2014.12.017)

    Google Scholar 

  53. Podberesky DJ, Angel E, Yoshizumi TT, Toncheva G, Salisbury SR, Alsip C, Barelli A, Egelhoff JC, Anderson-Evans C, Nguyen GB, et al. Radiation dose estimation for prospective and retrospective ECG-gated cardiac CT angiography in infants and small children using a 320-MDCT volume scanner. American Journal of Roentgenology 2012 1129–1135. https://doi.org/10.2214/AJR.12.8480)

    Google Scholar 

  54. Habib Geryes B, Calmon R, Donciu V, Khraiche D, Warin-Fresse K, Bonnet D, Boddaert N & Raimondi F. Low-dose paediatric cardiac and thoracic computed tomography with prospective triggering: is it possible at any heart rate? Physica Medica 2018 99–104. https://doi.org/10.1016/j.ejmp.2018.05.015)

    Google Scholar 

  55. Habib Geryes B, Calmon R, Khraiche D, Boddaert N, Bonnet D & Raimondi F. Radiation dose reduction in paediatric coronary computed tomography: assessment of effective dose and image quality. European Radiology 2016 2030–2038. https://doi.org/10.1007/s00330-015-4032-5)

    Google Scholar 

  56. Pannu HK, Alvarez W Jr & Fishman EK. Beta-blockers for cardiac CT: a primer for the radiologist. American Journal of Roentgenology 2006 S341–S345. https://doi.org/10.2214/AJR.04.1944)

    Google Scholar 

  57. Rizvi A, Deano RC, Bachman DP, Xiong G, Min JK & Truong QA. Analysis of ventricular function by CT. Journal of Cardiovascular Computed Tomography 2015 1–12. https://doi.org/10.1016/j.jcct.2014.11.007)

    Google Scholar 

  58. Boudjemline Y, Malekzadeh-Milani S, Patel M, Thambo JB, Bonnet D, Iserin L & Fraisse A. Predictors and outcomes of right ventricular outflow tract conduit rupture during percutaneous pulmonary valve implantation: a multicentre study. EuroIntervention 2016 1053–1062. https://doi.org/10.4244/EIJY14M09_06)

    Google Scholar 

  59. Forte MNV, Hussain T, Roest A, Gomez G, Jongbloed M, Simpson J, Pushparajah K, Byrne N & Valverde I. Living the heart in three dimensions: applications of 3D printing in CHD. Cardiology in the Young 2019 733–743. https://doi.org/10.1017/S1047951119000398)

    Google Scholar 

Download references

Funding

Dr Phuoc Duong is supported by the National Institute for Health Research (NIHR) Cardiovascular MedTech Co-operative. The views expressed are those of the authors and not necessarily those of the NIHR or the Department of Health and Social Care. Dr Sonya Babu-Narayan is supported by the British Heart Foundation (FS/11/38/28864).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kuberan Pushparajah BMBS BMedSci MD.

Rights and permissions

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.(http://creativecommons.org/licenses/by/4.0/), which permits use, duplication, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license and indicate if changes were made.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pushparajah, K., Duong, P., Mathur, S. et al. Cardiovascular MRI and CT in congenital heart disease. Echo Res Pract 6, R121–R138 (2019). https://doi.org/10.1530/ERP-19-0048

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1530/ERP-19-0048

Key Words