DOI QR코드

DOI QR Code

Evaluation of Antioxidant, Cytoprotective and Antimicrobial Properties of Polygoni multiflori Radix Extract, Fractions and Its Major Constituent

하수오 추출물, 분획물 및 주성분의 항산화, 세포 보호 및 항균 활성에 관한 평가

  • Shin, Hyuk Soo (Department of Fine Chemistry, Cosmetic R&D Center and Cosmetic Industry Coupled Collaboration Center, Seoul National University of Science and Technology) ;
  • Kim, Minwoo (Hansung Science High School) ;
  • Song, Jerry (Hansung Science High School) ;
  • Lee, Junseok (Hansung Science High School) ;
  • Ha, Yoonjeong (Hansung Science High School) ;
  • Jeon, Young Hee (Hansung Science High School) ;
  • Kim, Ji Woong (Department of Fine Chemistry, Cosmetic R&D Center and Cosmetic Industry Coupled Collaboration Center, Seoul National University of Science and Technology) ;
  • Lee, Yun Ju (Department of Fine Chemistry, Cosmetic R&D Center and Cosmetic Industry Coupled Collaboration Center, Seoul National University of Science and Technology) ;
  • Park, Soo Nam (Department of Fine Chemistry, Cosmetic R&D Center and Cosmetic Industry Coupled Collaboration Center, Seoul National University of Science and Technology)
  • 신혁수 (서울과학기술대학교 정밀화학과, 화장품종합기술연구소, 코스메틱 융.복합산업 지원 센터) ;
  • 김민우 (한성과학고등학교) ;
  • 송제리 (한성과학고등학교) ;
  • 이준석 (한성과학고등학교) ;
  • 하윤정 (한성과학고등학교) ;
  • 전영희 (한성과학고등학교) ;
  • 김지웅 (서울과학기술대학교 정밀화학과, 화장품종합기술연구소, 코스메틱 융.복합산업 지원 센터) ;
  • 이윤주 (서울과학기술대학교 정밀화학과, 화장품종합기술연구소, 코스메틱 융.복합산업 지원 센터) ;
  • 박수남 (서울과학기술대학교 정밀화학과, 화장품종합기술연구소, 코스메틱 융.복합산업 지원 센터)
  • Received : 2018.09.10
  • Accepted : 2018.10.22
  • Published : 2018.12.30

Abstract

In this study, the antioxidant, cytoprotective and antimicrobial activities of 50% ethanol extract of Polygoni multiflori Radix (PMR) and its ethyl acetate fraction were evaluated to confirm the applicability as a functional ingredient. The activities of the major constituent of PMR were verified and 2, 3, 5, 4′-tetrahydroxystilbene 2-O-${\beta}$-D-glucoside (THSG) was confirmed to be the main component of extract and fraction using HPLC-DAD, LC-EIS-MS analysis. The phenolic and THSG contents of the ethyl acetate fraction were 11.1- and 3.0-folds higher than those of the ethanol extract, respectively. As a result of the DPPH assay and that of luminol dependent chemiluminescence assay in $Fe^{3+}$-EDTA/H2O2 system. the ethylacetate fraction was superior to the ethanol extract in free radical and ROS scavenging activities. Especially, the ethyl acetate fraction and THSG exhibited the similar scavenging activity like L-ascorbic acid in ROS scavenging activity. The ethyl acetate fraction perceived the most potent cytoprotective effect against oxidative damage of erythrocytes induced by photosensitization reaction, followed by the ethanol fraction, THSG and that of (+)-${\alpha}$-tocopherol, which was used as a positive control. Antimicrobial activities were evaluated by disc diffusion and broth microdilution assay against S. aureus, E. coli, P. aeruginosa and C. albicans. In particular, the antibacterial activity of the extract and fraction against S. aureus was superior to that of methyl paraben. Taken together, our results suggest that PMR could be used as a natural ingredient for antioxidant, cytoprotective and antimicrobial activities.

본 연구에서는 하수오를 이용하여 50% 에탄올 추출물과 에틸아세테이트 분획물을 제조하고, 추출물 및 분획물의 항산화, 세포 보호 및 항균 효능을 평가하여 기능성 소재로서의 가능성을 확인하였다. 또한, 하수오에 주요하게 존재하는 성분의 활성도 검증하였다. HPLC-DAD, LC-EIS-MS를 통해 분석한 결과, 하수오의 주성분은 2, 3, 5, 4'-tetrahydroxystilbene 2-O-${\beta}$-D-glucoside (THSG)이었다. 페놀류 및 THSG 함량은 에틸아세테이트 분획물이 에탄올 추출물 보다 각각 11.1 및 3.0배 높게 나타났다. DPPH 자유 라디칼 및 $Fe^{3+}-EDTA/H_2O_2$ 시스템에서 생성된 ROS에 대한 소거 활성 평가에서, 에틸 아세테이트 분획물은 에탄올 추출물 보다 뛰어난 소거 활성을 나타냈다. 특히 ROS 소거 활성 평가에서 에틸 아세테이트 분획물과 THSG은 L-ascorbic acid와 동등한 소거 활성을 나타냈다. 이러한 결과를 바탕으로 수행된 광증감 반응으로 유도된 적혈구의 산화적 손상에 대한 세포 보호 활성은 에틸아세테이트 분획물, 에탄올 추출물, THSG 순서로 나타났으며, 모든 실험군이 양성 대조군으로 사용한 (+)-${\alpha}$-tocopherol보다 우수한 활성을 나타냄을 확인하였다. 항균 활성 평가는 S. aureus, E. coli, P. aeruginosa, C. albicans 균주를 대상으로, disc diffusion assay와 broth microdilution assay를 이용하여 수행하였다. 그 결과 추출물, 분획물 및 THSG 모두 모든 균주에 대해 항균 활성을 나타냈으며, 특히 그람 양성균인 S. aureus에 대해 methyl paraben보다 우수한 항균력을 나타냄을 확인하였다. 본 연구의 결과는 하수오가 항산화, 세포 보호 및 항균력에 관한 천연 소재로의 활용될 수 있는 가능성을 시사한다.

Keywords

HJPHBN_2018_v44n4_407_f0001.png 이미지

Figure 1. HPLC-DAD chromatograms of the (A) 50% ethanol extract (2.00 μg injected in 20 μL) and (B) ethyl acetate fraction (2.00 μg injected in 20 μL) of PMR acquired at 250-400 nm. (C) the ESI-MS spectrum of isolated compound (1) from the ethyl acetate fraction of PMR. (D) the MS2-spectrum of the [M+H]+ ions at m/z 407.13.

HJPHBN_2018_v44n4_407_f0002.png 이미지

Figure 2. TLC chromatograms (UV-254 (A, D), 365 nm (B, E) and NP-PEG reagents; UV-365 nm (C, F)). (A-C) the eluent system was ethyl acetate: chloroform: formic acid: water = 8 : 1 : 1 : 1 (v/v), (D-F) the eluent was n-hexane : ethyl acetate : acetic acid = 21 : 14 : 5 (v/v). ① emodin ② 50% EtOH extract ③ EtOAc fraction ④ THSG ⑤ gallic acid.

HJPHBN_2018_v44n4_407_f0003.png 이미지

Figure 4. Inhibition of rose bengal sensitized photohemolysis by the 50% ethanol extract and ethyl acetate fraction of PMR and that of THSG and (+)-α-tocopherol. (a-c) Time-dependent cell viability of erythrocyte treated different concentration of the samples; 3.125, 6.25 and 12.5 μg/mL, respectively.

HJPHBN_2018_v44n4_407_f0004.png 이미지

Figure 3. (A) Free radical scavenging and (B) ROS scavenging activities of the 50% ethanol extract and ethyl acetate fraction of PMR and that of THSG, (+)-α-tocopherol and L-ascorbic acid. the FSC50 and OSC50 of the different samples were determined using DPPH assay and luminol-dependent chemiluminescence assay in the Fe3+-EDTA/H2O2 system, respectively. values are presented as mean ± SD (n = 3). a-d/a’-b’, different letters on the top of the bars denote significant differences (p < 0.05).

HJPHBN_2018_v44n4_407_f0005.png 이미지

Figure 5. Photographs of the antibacterial test results of the 50% ethanol extract, and ethyl acetate fraction of PMR and that of THSG and methyl using the disk diffusion method against (a) S. aureus, (b) E. coli, (c) P. aeruginosa and (d) C. albicans.

Table 1. Weight Yields, Total Phenolic (TP) Contents and 2, 3, 5, 4'-Tetrahydroxystilbene 2-O-β-D-lucoside (THSG) Contents of the Extract and Fraction from PMR

HJPHBN_2018_v44n4_407_t0001.png 이미지

Table 2. Cytoprotective Effects of the 50% Ethanol Extract and Ethyl Acetate Fraction of PMR and that of THSG and (+)-α-Tocopherol against 1O2-Induced Photohemolysis in Erythrocytes

HJPHBN_2018_v44n4_407_t0002.png 이미지

Table 3. Values of MIC and MBC/MFCof the 50% Ethanol Extract, and Ethyl Acetate Fraction of PMR and that of THSG and Methyl Paraben by Broth Microdilution Assay (n = 3)

HJPHBN_2018_v44n4_407_t0003.png 이미지

References

  1. B. C. Dickinson and C. J. Chang, Chemistry and biology of reactive oxygen species in signaling or stress responses, Nat. Chem. Biol., 7(8), 504 (2011). https://doi.org/10.1038/nchembio.607
  2. J. Zhang, X. Wang, V. Vikash, Q. Ye, D. Wu, Y. Liu, and W. Dong, ROS and ROS-Mediated cellular signaling, Oxid. Med. Cell Longev., 4350965 (2016).
  3. B. D'Autreaux and M. B. Toledano, ROS as signalling molecules: mechanisms that generate specificity in ROS homeostasis, Nat. Rev. Mol. Cell Biol., 8(10), 813 (2007). https://doi.org/10.1038/nrm2256
  4. C. K. Chow, Antioxidant nutrients and environmental health: introduction, Toxicology, 180(1), 1 (2002). https://doi.org/10.1016/S0300-483X(02)00377-3
  5. K. J. Trouba, H. K. Hamadeh, R. P. Amin, and D. R. Germolec, Oxidative stress and its role in skin disease, Antioxid. Redox Signal., 4(4), 665 (2002). https://doi.org/10.1089/15230860260220175
  6. V. T. Natarajan, P. Ganju, A. Ramkumar, R. Grover, and R. S. Gokhale, Multifaceted pathways protect human skin from UV radiation, Nat. Chem. Biol., 10(7), 542 (2014). https://doi.org/10.1038/nchembio.1548
  7. Z. Sun, S. Y. Park, E. Hwang, M. Zhang, S. A. Seo, P. Lin, and T. H. Yi, Thymus vulgaris alleviates UVB irradiation induced skin damage via inhibition of MAPK/AP-1 and activation of Nrf2-ARE antioxidant system, J. Cell Mol. Med., 21(2), 336 (2017). https://doi.org/10.1111/jcmm.12968
  8. D. R. Bickers and M. Athar, Oxidative stress in the pathogenesis of skin disease, J. Invest. Dermatol., 126(12), 2565 (2006). https://doi.org/10.1038/sj.jid.5700340
  9. Y. Belkaid and S. Tamoutounour, The influence of skin microorganisms on cutaneous immunity, Nat. Rev. Immunol., 16(6), 353 (2016). https://doi.org/10.1038/nri.2016.48
  10. H. S. Shin, Y. J. Lee, J. W. Kim, B. R. Song, S. L. Lee, and S. N. Park, Evaluation of antioxidant, cytoprotective and antimicrobial activities of the extract and fractions obtained from young shoots of Nypa fruticans Wurmb, Kor. J. Pharmacogn., 49(2), 155 (2018).
  11. M. Al-Fatimi, M. Wurster, G. Schroder, and U. Lindequist, Antioxidant, antimicrobial and cytotoxic activities of selected medicinal plants from Yemen, J. Ethnopharmacol., 111(3), 657 (2007). https://doi.org/10.1016/j.jep.2007.01.018
  12. C. L. Dicastillo, F. Bustos, X. Valenzuela, G. Lopez-Carballo, J. M. Vilarino, and M. J. Galotto, Chilean berry Ugni molinae Turcz. fruit and leaves extracts with interesting antioxidant, antimicrobial and tyrosinase inhibitory properties, Food Res. Int., 102, 119 (2017). https://doi.org/10.1016/j.foodres.2017.09.073
  13. J. Dai and R. J. Mumper, Plant phenolics: extraction, analysis and their antioxidant and anticancer properties, Molecules, 15(10), 7313 (2010). https://doi.org/10.3390/molecules15107313
  14. Y. Cai, Q. Luo, M. Sun, and H. Corke, Antioxidant activity and phenolic compounds of 112 traditional Chinese medicinal plants associated with anticancer, Life Sci., 74(17), 2157 (2004). https://doi.org/10.1016/j.lfs.2003.09.047
  15. L. Lv, Y. Cheng, T. Zheng, X. Li, and R. Zhai, Purification, antioxidant activity and antiglycation of polysaccharides from Polygonum multiflorum Thunb, Carbohydr. Polym., 99, 765 (2014). https://doi.org/10.1016/j.carbpol.2013.09.007
  16. Z. W. Zhu, J. Li, X. M. Gao, E. Amponsem, L. Y. Kang, L. M. Hu, B. L. Zhang, and Y. X. Chang, Simultaneous determination of stilbenes, phenolic acids, flavonoids and anthraquinones in Radix polygoni multiflori by LC-MS/MS, J. Pharm. Biomed. Anal., 62, 162 (2012). https://doi.org/10.1016/j.jpba.2011.11.002
  17. L. Lin, B. Ni, H. Lin, M. Zhang, X. Li, X. Yin, C. Qu, and J. Ni, Traditional usages, botany, phytochemistry, pharmacology and toxicology of Polygonum multiflorum Thunb: a review, J. Ethnopharmacol., 159, 158 (2015). https://doi.org/10.1016/j.jep.2014.11.009
  18. E. S. S. Abdel-Hameed, Total phenolic contents and free radical scavenging activity of certain Egyptian Ficus species leaf samples, Food Chem., 114(4), 1271 (2009). https://doi.org/10.1016/j.foodchem.2008.11.005
  19. J. S. Seong, S. H. Xuan, S. H. Park, K. S. Lee, Y. M. Park, and S. N. Park, Antioxidative and antiaging activities and component analysis of Lespedeza cuneata G. Don extracts fermented with Lactobacillus pentosus, J. Microbiol. Biotechnol., 27(11), 1961 (2017). https://doi.org/10.4014/jmb.1706.06028
  20. S. N. Park, M. J. Kim, J. H. Ha, N. H. Lee, J. Park, J. Lee, D. Kim, and C. Yoon, Protective effects of TES trioleate, an inhibitor of phospholipase A2, on reactive oxygen species and UVA-induced cell damage, J. Photochem. Photobiol. B, 164, 30 (2016). https://doi.org/10.1016/j.jphotobiol.2016.09.014
  21. T. Yi, K. S. Y. Leung, G. H. Lu, H. Zhang, and K. Chan, Identification and determination of the major constituents in traditional Chinese medicinal plant Polygonum multiflorum thunb by HPLC coupled with PAD and ESI/MS, Phytochemical. Analysis, 18(3), 181 (2007). https://doi.org/10.1002/pca.963
  22. V. Jerkovic, F. Nguyen, S. Nizet, and S. Collin, Combinatorial synthesis, reversed-phase and normal-phase high-performance liquid chromatography elution data and liquid chromatography/positive atmospheric pressure chemical ionization tandem mass spectra of methoxylated and glycosylated resveratrol analogues, Rapid Commun. Mass Spectrom., 21(15), 2456 (2007). https://doi.org/10.1002/rcm.3116
  23. J. M. Gutteridge, L. Maidt, and L. Poyer, Superoxide dismutase and fenton chemistry. Reaction of ferric-EDTA complex and ferric-bipyridyl complex with hydrogen peroxide without the apparent formation of iron(II), Biochem. J., 269(1), 169 (1990). https://doi.org/10.1042/bj2690169
  24. R. L. Chen, C. H. Lin, C. Y. Chung, and T. J. Cheng, Determination of tannin in green tea infusion by flow-injection analysis based on quenching the fluorescence of 3-aminophthalate, J. Agric. Food Chem., 53(22), 8443 (2005). https://doi.org/10.1021/jf051077f
  25. M. C. DeRosa and R. J. Crutchley, Photosensitized singlet oxygen and its applications, Coord. Chem. Rev., 233-234, 351 (2002). https://doi.org/10.1016/S0010-8545(02)00034-6
  26. C. Papuc, G. V. Goran, C. N. Predescu, and V. Nicorescu, Mechanisms of oxidative processes in meat and toxicity induced by postprandial degradation products: a review, Compr. Rev. Food Sci. Food Saf., 16(1), 96 (2017). https://doi.org/10.1111/1541-4337.12241
  27. T. G. Nam, B. H. Lee, H. K. Choi, A. R. Mansur, S. G. Lee, and D. O. Kim, Rhus verniciflua Stokes extract and its flavonoids protect PC-12 cells against H2O2-induced cytotoxicity, J. Microbiol. Biotechnol., 27(6), 1090 (2017). https://doi.org/10.4014/jmb.1612.12018
  28. K. A. Youdim, B. Shukitt-Hale, S. MacKinnon, W. Kalt, and J. A. Joseph, Polyphenolics enhance red blood cell resistance to oxidative stress: in vitro and in vivo, Biochim. Biophys. Acta, 1523(1), 117 (2000). https://doi.org/10.1016/S0304-4165(00)00109-4
  29. A. S. Magalhaes, B. M. Silva, J. A. Pereira, P. B. Andrade, P. Valentao, and M. Carvalho, Protective effect of quince (Cydonia oblonga Miller) fruit against oxidative hemolysis of human erythrocytes, Food Chem. Toxicol., 47(6), 1372 (2009). https://doi.org/10.1016/j.fct.2009.03.017
  30. K. Hirakawa, H. Umemoto, R. Kikuchi, H. Yamaguchi, Y. Nishimura, T. Arai, S. Okazaki, and H. Segawa, Determination of singlet oxygen and electron transfer mediated mechanisms of photosensitized protein damage by phosphorus(V)porphyrins, Chem. Res. Toxicol., 28(2), 262 (2015). https://doi.org/10.1021/tx500492w
  31. Y. Fu, Y. Zu, L. Chen, X. Shi, Z. Wang, S. Sun, and T. Efferth, Antimicrobial activity of clove and rosemary essential oils alone and in combination, Phytother. Res., 21(10), 989 (2007). https://doi.org/10.1002/ptr.2179
  32. M. M. Cowan, Plant products as antimicrobial agents, Clin. Microbiol. Rev., 12(4), 564 (1999). https://doi.org/10.1128/CMR.12.4.564
  33. S. Basu, A. Ghosh, and B. Hazra, Evaluation of the antibacterial activity of Ventilago madraspatana Gaertn., Rubia cordifolia Linn., and Lantana camara Linn.: isolation of emodin and physcion as active antibacterial agents, Phytother. Res., 19(10), 888 (2005). https://doi.org/10.1002/ptr.1752
  34. W. J. Kong, J. B. Wang, C. Jin, Y. L. Zhao, C. M. Dai, X. H. Xiao, and Z. L. Li, Effect of emodin on Candida albicans growth investigated by microcalorimetry combined with chemometric analysis, Appl. Microbiol. Biotechnol., 83(6), 1183 (2009). https://doi.org/10.1007/s00253-009-2054-0
  35. X. Ding, B. Yin, L. Qian, Z. Zeng, Z. Yang, H. Li, Y. Lu, and S. Zhou, Screening for novel quorum-sensing inhibitors to interfere with the formation of Pseudomonas aeruginosa biofilm, J. Med. Microbiol., 60(12), 1827 (2011). https://doi.org/10.1099/jmm.0.024166-0
  36. A. Borges, C. Ferreira, M. J. Saavedra, and M. Simoes, Antibacterial activity and mode of action of ferulic and gallic acids against pathogenic bacteria, Microb. Drug Resist., 19(4), 256 (2013). https://doi.org/10.1089/mdr.2012.0244