Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter (O) April 5, 2019

Adsorption Kinetics of Nitrogen Molecules on Size-Selected Silver Cluster Cations

  • Tomonori Ito , Masashi Arakawa , Yuki Taniguchi and Akira Terasaki EMAIL logo

Abstract

We present adsorption processes of dinitrogen on size-selected silver cluster cations, Agn+ (n = 1–10), studied by kinetics measurement using an ion trap. The cluster ions showed sequential adsorption of N2 molecules when the ion trap was cooled down to 105 K, excluding n = 8 and 9 that were exceptionally inactive at this temperature. Termolecular rate coefficients of each adsorption step are determined by analyzing time-dependent changes in the reactant and product ion signals. The first-step rate coefficients were found to increase exponentially from n = 1 to 7 due to increased internal degrees of freedom at larger sizes, which are favorable for accommodating the adsorption energy in a free cluster. In contrast, the adsorption rate turned to decrease for n > 7 due to weaker binding of dinitrogen as revealed by density-functional-theory (DFT) calculation. Adsorption sites on Agn+ are further discussed on the basis of the maximum number of adsorbing N2 molecules observed in the experiment.

Acknowledgements

T.I. appreciates the Grant-in-Aid for JSPS Fellows (Funder Id: http://dx.doi.org/10.13039/501100001691, JP13J06463) from the Japan Society for Promotion of Science (JSPS). The present study was supported by the Grant-in-Aid for Scientific Research (A) (Funder Id: http://dx.doi.org/10.13039/501100001691, JP23245006) from JSPS. The DFT calculations were performed mainly by the computing system at the Research Institute for Information Technology, Kyushu University.

References

1. M. Haruta, T. Kobayashi, H. Sano, N. Yamada, Chem. Lett. 16 (1987) 405.10.1246/cl.1987.405Search in Google Scholar

2. P. J. Roach, W.H. Woodward, A. W. Castleman Jr., A. C. Reber, S. N. Khanna, Science 323 (2009) 492.10.1126/science.1165884Search in Google Scholar PubMed

3. W. H. Woodward, A. C. Reber, J. C. Smith, S. N. Khanna, A. W. Castleman Jr., J. Phys. Chem. C 117 (2013) 7445.10.1021/jp303668bSearch in Google Scholar

4. M. Arakawa, R. Yamane, A. Terasaki, J. Phys. Chem. A 120 (2016) 139.10.1021/acs.jpca.5b08900Search in Google Scholar PubMed

5. M. Arakawa, T. Omoda, A. Terasaki, J. Phys. Chem. C 121 (2017) 10790.10.1021/acs.jpcc.6b11689Search in Google Scholar

6. J. Ma, X. Cao, X. Xing, X. Wang, J. H. Parks, Phys. Chem. Chem. Phys. 18 (2016) 743.10.1039/C5CP06116DSearch in Google Scholar PubMed

7. V. Bonačić-Koutecký, L. Češpiva, P. Fantucci, J. Koutecký, J. Chem. Phys. 98 (1993) 7981.10.1063/1.464552Search in Google Scholar

8. M. L. McKee, A. Samokhvalov, J. Phys. Chem. A 121 (2017) 5018.10.1021/acs.jpca.7b03905Search in Google Scholar PubMed

9. P. Weis, T. Bierweiler, S. Gilb, M. M. Kappes, Chem. Phys. Lett. 355 (2002) 355.10.1016/S0009-2614(02)00277-4Search in Google Scholar

10. T. van der Tol, D. Jia, Y. Li, V. Chernyy, J. M. Bakker, et al., Phys. Chem. Chem. Phys. 19 (2017) 19360.10.1039/C7CP03335DSearch in Google Scholar PubMed

11. M. J. Manard, P. R. Kemper, M. T. Bowers, J. Am. Chem. Soc. 127 (2005) 9994.10.1021/ja052251jSearch in Google Scholar PubMed

12. M. Schmidt, A. Masson, H.-P. Cheng, C. Bréchignac, Chem. Phys. Chem. 16 (2015) 855.10.1002/cphc.201402726Search in Google Scholar PubMed

13. Y. N. Wu, M. Schmidt, J. Leygnier, H. P. Cheng, A. Masson, et al., J. Chem. Phys. 136 (2012) 024314.10.1063/1.3673616Search in Google Scholar PubMed

14. M. Schmidt, A. Masson, C. Bréchignac, J. Chem. Phys. 122 (2005) 134712.10.1063/1.1871892Search in Google Scholar PubMed

15. M. Schmidt, A. Masson, C. Bréchignac, Phys. Rev. Lett. 91 (2003) 243401.10.1103/PhysRevLett.91.243401Search in Google Scholar PubMed

16. D. Schooss, S. Gilb, J. Kaller, M. M. Kappes, F. Furche, et al., J. Chem. Phys. 113 (2000) 5361; ibid. 113 (2000) 10413.10.1063/1.1290028Search in Google Scholar

17. G. Naresh Patwari, T. Ito, K. Egashira, A. Terasaki, Chem. Asian J. 6 (2011) 1834.10.1002/asia.201000901Search in Google Scholar PubMed

18. F. Mafuné, Y. Tawaraya, S. Kudoh, J. Phys. Chem. A 120 (2016) 4089.10.1021/acs.jpca.6b03479Search in Google Scholar PubMed

19. M. P. Klein, A. A. Ehrhard, J. Mohrbach, S. Dillinger, G. Niedner-Schatteburg, Top. Catal. 61 (2018) 106.10.1007/s11244-017-0865-2Search in Google Scholar

20. S. Dillinger, J. Mohrbach, J. Hewer, M. Gaffga, G. Niedner-Schatteburg, Phys. Chem. Chem. Phys. 17 (2015) 10358.10.1039/C5CP00047ESearch in Google Scholar PubMed

21. J. Mohrbach, S. Dillinger, G. Niedner-Schatteburg, J. Phys. Chem. C 121 (2017) 10907.10.1021/acs.jpcc.6b12167Search in Google Scholar

22. J. Mohrbach, S. Dillinger, G. Niedner-Schatteburg, J. Chem. Phys. 147 (2017) 184304.10.1063/1.4997403Search in Google Scholar PubMed

23. S. Dillinger, J. Mohrbach, G. Niedner-Schatteburg, J. Chem. Phys. 147 (2017) 184305.10.1063/1.4997407Search in Google Scholar PubMed

24. A. Terasaki, T. Majima, T. Kondow, J. Chem. Phys. 127 (2007) 231101.10.1063/1.2822022Search in Google Scholar PubMed

25. T. Ito, K. Egashira, K. Tsukiyama, A. Terasaki, Chem. Phys. Lett. 538 (2012) 19.10.1016/j.cplett.2012.04.040Search in Google Scholar

26. M. Arakawa, K. Ando, S. Fujimoto, S. Mishra, G. Naresh Patwari, et al., Phys. Chem. Chem. Phys. 20 (2018) 13974.10.1039/C8CP00424BSearch in Google Scholar PubMed

27. A. D. Becke, J. Chem. Phys. 98 (1993) 5648.10.1063/1.464913Search in Google Scholar

28. C. Lee, W. Yang, R. G. Parr, Phys. Rev. B 37 (1988) 785.10.1103/PhysRevB.37.785Search in Google Scholar

29. M. Couty, M. B. Hall, J. Comp. Chem. 17 (1996) 1359.10.1002/(SICI)1096-987X(199608)17:11<1359::AID-JCC9>3.0.CO;2-LSearch in Google Scholar

30. T. H. Dunning Jr., J. Chem. Phys. 90 (1989) 1007.10.1063/1.456153Search in Google Scholar

31. R. A. Kendall, T. H. Dunning Jr., R. J. Harrison, J. Chem. Phys. 96 (1992) 6796.10.1063/1.462569Search in Google Scholar

32. M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, et al., Gaussian 16, Revision A.03, Gaussian, Inc., Wallingford, CT (2016).Search in Google Scholar

33. E. Schumacher, DETMECH – chemical reaction kinetics software. Chemistry Department, University of Bern, Switzerland (2003).Search in Google Scholar

34. T. M. Bernhardt, J. Hagen, S. M. Lang, D. M. Popolan, L. D. Socaciu-Siebert, et al., J. Phys. Chem. A 113 (2009) 2724.10.1021/jp810055qSearch in Google Scholar PubMed

35. J. L. F. Da Silva, C. Stampfl, M. Scheffler, Phys. Rev. Lett. 90 (2003) 066104.10.1103/PhysRevLett.90.066104Search in Google Scholar PubMed


Supplementary Material

The online version of this article offers supplementary material (DOI: https://doi.org/10.1515/zpch-2019-1373).


Received: 2019-01-10
Accepted: 2019-03-08
Published Online: 2019-04-05
Published in Print: 2019-06-26

©2019 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 23.4.2024 from https://www.degruyter.com/document/doi/10.1515/zpch-2019-1373/html
Scroll to top button