Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter December 6, 2021

Chalcogenative spirocyclization of N-aryl propiolamides with diselenides/disulfides promoted by Selectfluor

  • Jin-Wei Yuan EMAIL logo , Guang-Chao Huang , Li-Li Wang , Xin-Yuan Wang , Liang-Ru Yang , Shou-Ren Zhang , Pu Mao , Yong-Mei Xiao and Ling-Bo Qu

Abstract

A practical and efficient synthetic route to construct a variety of 3-arylselenenyl/3-arylthio spiro[4.5]trienones was developed using Selectfluor reagent as a mild oxidant. This reaction proceeds via a sequence of electrophilic cation addition, spirocyclization and dearomatization, then offers an approach to introduce Se/S-centered cation into the C–C triple bonds. The utility of this protocol were justified by the excellent compatibility of a wide range of functional groups, good yields and scalability under mild reaction conditions.


Corresponding author: Jin-Wei Yuan, School of Chemistry & Chemical Engineering, Henan University of Technology, Zhengzhou 450001, P. R. China, E-mail:

Funding source: Natural Science Foundation in Henan Province Department of Education

Award Identifier / Grant number: 21A150016

Funding source: Innovative Funds Plan of Henan University of Technology

Award Identifier / Grant number: 2020ZKCJ29

Funding source: Fundamental Research Funds for the Henan Provincial Colleges and Universities in Henan University of Technology

Award Identifier / Grant number: 2017RCJH08

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: This work was supported by the Natural Science Foundation in Henan Province Department of Education (No. 21A150016), the Innovative Funds Plan of Henan University of Technology (No. 2020ZKCJ29), and the Fundamental Research Funds for the Henan Provincial Colleges and Universities in Henan University of Technology (No. 2017RCJH08).

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

1. Cai, Y. S., Guo, Y. W., Krohn, K. Nat. Prod. Rep. 2010, 27, 1840–1870; https://doi.org/10.1039/c0np00031k.Search in Google Scholar PubMed

2. Gravel, E., Poupon, E. Nat. Prod. Rep. 2010, 27, 32–56; https://doi.org/10.1039/b911866g.Search in Google Scholar PubMed

3. Antunes, E. M., Copp, B. R., Davier-Coleman, M. T., Samaai, T. Nat. Prod. Rep. 2005, 22, 62–72; https://doi.org/10.1039/b407299p.Search in Google Scholar PubMed

4. Yoneda, K., Yamagata, E., Nakanishi, T., Nagashima, T., Kawasaki, I., Yoshida, T., Mori, H., Miura, I. Photochemistry 1984, 23, 2068–2069; https://doi.org/10.1016/s0031-9422(00)84976-6.Search in Google Scholar

5. Yugandhar, D., Nayak, V. L., Archana, S., Shekar, K. C., Srivastava, A. K. Eur. J. Med. Chem. 2015, 101, 348–357; https://doi.org/10.1016/j.ejmech.2015.06.050.Search in Google Scholar PubMed

6. Winkler, M., Maynadier, M., Wein, S., Lespinasse, M., Boumis, G., Miele, A. E., Vial, H., Wong, Y. Org. Biomol. Chem. 2015, 13, 2064–2077; https://doi.org/10.1039/c4ob02459a.Search in Google Scholar PubMed

7. Leon, R., Jawalekar, A., Redert, T., Gaunt, M. J. Chem. Sci. 2011, 2, 1487–1490; https://doi.org/10.1039/c1sc00218j.Search in Google Scholar

8. Jia, M. Q., You, S. L. Chem. Commun. 2012, 48, 6363–6636; https://doi.org/10.1039/c2cc32783j.Search in Google Scholar PubMed

9. Roche, S. T., Porco, J. A. Angew. Chem. Int. Ed. 2011, 50, 4068–4409; https://doi.org/10.1002/anie.201006017.Search in Google Scholar PubMed PubMed Central

10. Zhuo, C. X., Zhang, W., You, S. L. Angew. Chem. Int. Ed. 2012, 51, 12662–12686; https://doi.org/10.1002/anie.201204822.Search in Google Scholar PubMed

11. Reddy, C. R., Prajapti, S. K., Warudikar, K., Ranjan, R., Rao, B. B. Org. Biomol. Chem. 2017, 15, 3130–3051; https://doi.org/10.1039/c7ob00405b.Search in Google Scholar PubMed

12. Dohi, T., Maruyama, A., Yoshimura, M., Morimoto, K., Tohma, H., Kita, Y. Angew. Chem. Int. Ed. 2005, 44, 6193–9196; https://doi.org/10.1002/anie.200501688.Search in Google Scholar PubMed

13. Magdziak, D., Meek, S. J., Pettus, T. R. R. Chem. Rev. 2004, 104, 1383–1429; https://doi.org/10.1021/cr0306900.Search in Google Scholar PubMed

14. Pouységu, L., Deffieux, D., Quideau, S. Tetrahedron 2010, 66, 2235–2261.10.1016/j.tet.2009.12.046Search in Google Scholar

15. Yugandhar, D., Kuriakose, S., Nanubolu, J. B., Srivastava, A. K. Org. Lett. 2016, 18, 1040–1043; https://doi.org/10.1021/acs.orglett.6b00164.Search in Google Scholar PubMed

16. Yu, Q. F., Zhang, Y. H., Yin, W., Tang, B. X., Tang, R. Y., Zhang, P., Li, J. H. J. Org. Chem. 2008, 73, 3568–3661; https://doi.org/10.1021/jo800328a.Search in Google Scholar PubMed

17. Yin, Q., You, S. L. Org. Lett. 2012, 14, 3526–3529; https://doi.org/10.1021/ol301531z.Search in Google Scholar PubMed

18. Wang, L. J., Zhu, H. T., Qiu, Y. F., Liu, X. Y., Liang, Y. M. Org. Biomol. Chem. 2014, 12, 643–650; https://doi.org/10.1039/c3ob42020e.Search in Google Scholar PubMed

19. Tnay, Y. L., Chen, C., Chua, Y. Y., Zhang, L., Chiba, S. Org. Lett. 2012, 14, 3550–3553; https://doi.org/10.1021/ol301583y.Search in Google Scholar PubMed

20. Wu, Q. F., Liu, W. B., Zhuo, C. X., Rong, Z. Q., Ye, K. Y., You, S. L. Angew. Chem. Int. Ed. 2011, 50, 4455–4458; https://doi.org/10.1002/anie.201100206.Search in Google Scholar PubMed

21. Rousseaux, S., García-ortanet, J., Del Aguila Sanchez, M. A., Buchwald, S. L. J. Am. Chem. Soc. 2011, 133, 9282–9285; https://doi.org/10.1021/ja203644q.Search in Google Scholar PubMed PubMed Central

22. Pigge, F. C., Coniglio, J. J., Dalvi, R. J. Am. Chem. Soc. 2006, 128, 3498–3499; https://doi.org/10.1021/ja058342y.Search in Google Scholar PubMed

23. Matsuura, B. S., Condie, A. G., Buff, R. C., Karahalis, G. J., Stephenson, C. R. J. Org. Lett. 2011, 13, 6320–6632; https://doi.org/10.1021/ol202881q.Search in Google Scholar PubMed PubMed Central

24. Bansode, A. H., Shaikh, S. R., Gonnade, R. G., Patil, N. T. Chem. Commun. 2017, 53, 9081–9084; https://doi.org/10.1039/c7cc04010e.Search in Google Scholar PubMed

25. Zheng, D., Yu, J., Wu, J. Angew. Chem. Int. Ed. 2016, 55, 11925–11929; https://doi.org/10.1002/anie.201607292.Search in Google Scholar PubMed

26. Yang, X. L., Long, Y., Chen, F., Han, B. Org. Chem. Front. 2016, 3, 184–189; https://doi.org/10.1039/c5qo00352k.Search in Google Scholar

27. Ouyang, X. H., Song, R. J., Liu, B., Li, J. H. Chem. Commun. 2016, 52, 2573–2576; https://doi.org/10.1039/c5cc08952b.Search in Google Scholar PubMed

28. Ni, S., Cao, J., Mei, H., Han, J., Li, S., Pan, Y. Green Chem. 2016, 18, 3935–3939; https://doi.org/10.1039/c6gc01027j.Search in Google Scholar

29. Schumacher, R. F., Rosario, A. R., Souza, A. C. G., Menezes, P. H., Zeni, G. Org. Lett. 2010, 12, 1952–1955; https://doi.org/10.1021/ol1003753.Search in Google Scholar PubMed

30. Godoi, B., Schumacher, R. F., Zeni, G. Chem. Rev. 2011, 111, 2937–2980; https://doi.org/10.1021/cr100214d.Search in Google Scholar PubMed

31. Zhang, X., Larock, R. C. J. Am. Chem. Soc. 2005, 127, 12230–12231; https://doi.org/10.1021/ja053079m.Search in Google Scholar PubMed

32. Tang, B. X., Tang, D. J., Tang, S., Yu, O. F., Zhang, Y. H., Liang, Y., Zhong, P., Li, J. H. Org. Lett. 2008, 10, 1063–1066; https://doi.org/10.1021/ol703050z.Search in Google Scholar PubMed

33. Wen, J., Wei, W., Xue, S., Yang, D., Lou, Y., Gao, C., Wang, H. J. Org. Chem. 2015, 80, 4966–4972; https://doi.org/10.1021/acs.joc.5b00361.Search in Google Scholar PubMed

34. Hua, H. L., He, Y. T., Qiu, Y. F., Li, Y. X., song, B., Gao, P., Song, X. R., Guo, D. H., Liu, X. Y., Liang, Y. M. Chem. Eur. J. 2015, 21, 1468–1473; https://doi.org/10.1002/chem.201405672.Search in Google Scholar PubMed

35. Yang, W. C., Zhang, M. M., Feng, J. G. Adv. Synth. Catal. 2020, 362, 4446–4461; https://doi.org/10.1002/adsc.202000636.Search in Google Scholar

36. Tang, B. X., Zhang, Y. H., Song, R. J., Tang, D. J., Deng, G. B., Wang, Z. Q., Xie, Y. X., Xia, Y. Z., Li, J. H. J. Org. Chem. 2012, 77, 2837–2849; https://doi.org/10.1021/jo300037n.Search in Google Scholar PubMed

37. Yu, Q. F., Zhang, Y. H., Yin, Q., Tang, B. X., Tang, R. Y., Zhang, P., Li, J. H. J. Org. Chem. 2008, 73, 3658–3661; https://doi.org/10.1021/jo800328a.Search in Google Scholar PubMed

38. Liu, T., Li, Y., Jiang, L., Wang, J., Jin, K., Zhang, R., Duan, C. Org. Biomol. Chem. 2020, 18, 1933–1939; https://doi.org/10.1039/d0ob00057d.Search in Google Scholar PubMed

39. Nair, A. M., Shinde, A. H., Kumar, S., Volla, C. M. R. Chem. Commun. 2020, 56, 12367–12370; https://doi.org/10.1039/d0cc04800c.Search in Google Scholar PubMed

40. Tang, B. X., Yin, Q., Tang, R. Y., Li, J. H. J. Org. Chem. 2008, 73, 9008–9011; https://doi.org/10.1021/jo8018297.Search in Google Scholar PubMed

41. Yu, K., Kong, X., Yang, J., Li, G., Xu, B., Chen, Q. J. Org. Chem. 2021, 86, 917–928; https://doi.org/10.1021/acs.joc.0c02429.Search in Google Scholar PubMed

42. Chen, P., Xie, J., Chen, Z., Xiong, B. Q., Liu, Y., Yang, C. A., Tang, K. W. Adv. Synth. Catal. 2021, 363, 4440–4446; https://doi.org/10.1002/adsc.202100852.Search in Google Scholar

43. Ouyang, X. H., Song, R. J., Li, Y., Liu, B., Li, J. H. J. Org. Chem. 2014, 79, 4582–4589; https://doi.org/10.1021/jo5005982.Search in Google Scholar PubMed

44. Liu, Y., Wang, Q. L., Zhou, C. S., Xiong, B. Q., Zhang, P. L., Yang, C., Tang, K. W. J. Org. Chem. 2018, 83, 2210–2218; https://doi.org/10.1021/acs.joc.7b03104.Search in Google Scholar PubMed

45. Reddy, C. R., Kolgave, D. H., Subbarao, M., Aila, M., Prajapti, S. K. Org. Lett. 2020, 22, 5342–5346; https://doi.org/10.1021/acs.orglett.0c01588.Search in Google Scholar PubMed

46. Wei, W. T., Song, R. J., Ouyang, X. H., Li, Y., Li, H. B., Li, J. H. Org. Chem. Front. 2014, 1, 484–489; https://doi.org/10.1039/c4qo00006d.Search in Google Scholar

47. Wang, C. S., Roisnel, T., Dixneuf, P. H., Soulé, J. F. Adv. Synth. Catal. 2019, 361, 445–450; https://doi.org/10.1002/adsc.201801203.Search in Google Scholar

48. Manna, S., Ashwathappa, P. K. S., Prabhu, K. R. Chem. Commun. 2020, 56, 13165–13168; https://doi.org/10.1039/d0cc01217c.Search in Google Scholar PubMed

49. Li, M., Song, R. J., Li, J. H. Chin. J. Chem. 2017, 35, 299–302; https://doi.org/10.1002/cjoc.201600749.Search in Google Scholar

50. Reddy, C. R., Yarlagadda, S., Ramesh, B., Reddy, M. R., Sridhar, B., Reddy, B. V. S. Eur. J. Org. Chem. 2017, 2017, 2332–2337; https://doi.org/10.1002/ejoc.201700058.Search in Google Scholar

51. Wang, L. J., Wang, A. Q., Xia, Y., Wu, X. X., Liu, X. Y., Liang, Y. M. Chem. Commun. 2014, 50, 13998–14001; https://doi.org/10.1039/c4cc06923d.Search in Google Scholar PubMed

52. Zeng, F. L., Chen, X. L., Sun, K., Zhu, H. L., Yuan, X. Y., Liu, Y., Qu, L. B., Zhao, Y. F., Yu, B. Org. Chem. Front. 2021, 8, 760–766; https://doi.org/10.1039/d0qo01410a.Search in Google Scholar

53. Yang, X. H., Ouyang, X. H., Wei, W. T., Song, R. J., Li, J. H. Adv. Synth. Catal. 2015, 357, 1161–1166; https://doi.org/10.1002/adsc.201400895.Search in Google Scholar

54. Chen, Y., Chen, Y. J., Guan, Z., He, Y. H. Tetrahedron 2019, 75, 130763; https://doi.org/10.1016/j.tet.2019.130763.Search in Google Scholar

55. Wu, L. J., Tan, F. L., Li, M., Song, R. J., Li, J. H. Org. Chem. Front. 2017, 4, 350–353; https://doi.org/10.1039/c6qo00691d.Search in Google Scholar

56. Gao, P., Zhang, W., Zhang, Z. Org. Lett. 2016, 18, 5820–5823; https://doi.org/10.1021/acs.orglett.6b02781.Search in Google Scholar PubMed

57. Nair, A. M., Halder, I., Khan, S., Volla, C. M. R. Adv. Synth. Catal. 2020, 362, 224–229; https://doi.org/10.1002/adsc.201901321.Search in Google Scholar

58. Liu, Y., Wang, Q. L., Xiong, B. Q., Zhang, P. L., Yang, C. A., Gong, Y. X., Liao, J., Zhou, Q. Synlett 2018, 29, 2396–2403; https://doi.org/10.1055/s-0037-1609948.Search in Google Scholar

59. Liu, Y., Wang, Q. L., Chen, Z., Zhou, Q., Xiong, B. Q., Zhang, P. L., Tang, K. W. Chem. Commun. 2019, 55, 12212–12215; https://doi.org/10.1039/c9cc05949k.Search in Google Scholar PubMed

60. Jin, D. P., Gao, P., Chen, D. Q., Chen, S., Wang, J., Liu, X. Y., Liang, Y. M. Org. Lett. 2016, 18, 3486–3489; https://doi.org/10.1021/acs.orglett.6b01702.Search in Google Scholar PubMed

61. Brutchey, R. L. Acc. Chem. Res. 2015, 48, 2918–2926; https://doi.org/10.1021/acs.accounts.5b00362.Search in Google Scholar PubMed

62. Modha, S. G., Mehtab, V. P., der Eycken, E. V. V. Chem. Soc. Rev. 2013, 42, 5042–5055; https://doi.org/10.1039/c3cs60041f.Search in Google Scholar PubMed

63. Fourmigue, M., Dhaka, A. Coord. Chem. Rev. 2020, 403, 213084–213100; https://doi.org/10.1016/j.ccr.2019.213084.Search in Google Scholar

64. Chen, Z., Lai, H., Hou, L., Chen, T. Chem. Commun. 2020, 56, 179–196; https://doi.org/10.1039/c9cc07683b.Search in Google Scholar PubMed

65. Frieben, E. E., Amin, S., Sharma, A. K. J. Med. Chem. 2019, 62, 5261–5275; https://doi.org/10.1021/acs.jmedchem.8b01698.Search in Google Scholar PubMed

66. Csonka, A., Kincses, A., Nove, M., Vadas, Z., Spengler, G., Csonka, A., Sanmartin, C., Sanmartin, C., Dominguez-Alvarez, E. Anticancer Res. 2019, 39, 3777–3783; https://doi.org/10.21873/anticanres.13526.Search in Google Scholar PubMed

67. Vahter, J., Viht, K., Uri, A., Manoharan, G. B., Enkvist, E. Bioorg. Med. Chem. 2018, 26, 5062–5068; https://doi.org/10.1016/j.bmc.2018.09.003.Search in Google Scholar PubMed

68. Tian, M., Yang, Y., Avila, F. W., Fish, T., Yuan, H., Hui, M., Thannhauser, T. W., Li, L., Tian, M., Pan, S. J. Agric. Food Chem. 2018, 66, 8036–8044; https://doi.org/10.1021/acs.jafc.8b03396.Search in Google Scholar PubMed

69. Wang, X. Y., Zhong, Y. F., Mo, Z. Y., Wu, S. H., Xu, Y. L., Tang, H. T., Pan, Y. M. Adv. Synth. Catal. 2021, 363, 208–214; https://doi.org/10.1002/adsc.202001192.Search in Google Scholar

70. Song, Z., Ding, C., Wang, S., Dai, Q., Sheng, Y., Zheng, Z., Liang, G. Chem. Commun. 2020, 56, 1847–1850; https://doi.org/10.1039/c9cc09001k.Search in Google Scholar PubMed

71. Ai, Z., Xiao, J., Li, Y., Guo, B., Du, Y., Zhao, K. Org. Chem. Front. 2020, 7, 3935–3940; https://doi.org/10.1039/d0qo01175d.Search in Google Scholar

72. Ghosh, P., Chhetri, G., Perl, E., Das, S. Adv. Synth. Catal. 2021, 363, 2148–2156; https://doi.org/10.1002/adsc.202001426.Search in Google Scholar

73. Sun, K., Wang, S., Feng, R., Zhang, Y., Wang, X., Zhang, Z., Zhang, B. Org. Lett. 2019, 21, 2052–2055; https://doi.org/10.1021/acs.orglett.9b00240.Search in Google Scholar PubMed

74. Kosso, A. R. O., Kabri, Y., Broggi, J., Redon, S., Vanelle, P. J. Org. Chem. 2020, 85, 3071–3081; https://doi.org/10.1021/acs.joc.9b02963.Search in Google Scholar PubMed

75. Brahmachari, G., Bhowmick, A., Karmakar, I. J. Org. Chem. 2021, 86, 9658–9669; https://doi.org/10.1021/acs.joc.1c00919.Search in Google Scholar PubMed

76. Cui, H., Wei, W., Yang, D., Zhang, J., Xu, Z., Wen, J., Wang, H. RSC Adv. 2015, 5, 84657–84661; https://doi.org/10.1039/c5ra16548b.Search in Google Scholar

77. Qian, P. C., Liu, Y., Song, R. J., Xiang, J. N., Li, J. H. Synlett 2015, 26, 1213–1216.10.1055/s-0034-1380573Search in Google Scholar

78. Skubi, K. L., Blum, T. R., Yoon, T. P. Chem. Rev. 2016, 116, 10035–10074; https://doi.org/10.1021/acs.chemrev.6b00018.Search in Google Scholar PubMed PubMed Central

79. Romero, N. A., Nicewicz, D. A. Chem. Rev. 2016, 116, 10075–10166; https://doi.org/10.1021/acs.chemrev.6b00057.Search in Google Scholar PubMed

80. Xuan, J., Xiao, W. J. Angew. Chem. Int. Ed. 2012, 51, 6828–6838; https://doi.org/10.1002/anie.201200223.Search in Google Scholar PubMed

81. Nicewicz, D. A., MacMillan, D. W. C. Science 2008, 322, 77–80; https://doi.org/10.1126/science.1161976.Search in Google Scholar PubMed PubMed Central

82. Yoon, T. P., Ischay, M. A. Du J. Nat. Chem. 2010, 2, 527–532; https://doi.org/10.1038/nchem.687.Search in Google Scholar PubMed

83. Shi, L., Xia, W. Chem. Soc. Rev. 2012, 41, 7687–7697; https://doi.org/10.1039/c2cs35203f.Search in Google Scholar PubMed

84. Wei, W., Cui, H., Yang, D., Yue, H., He, C., Zhang, Y., Wang, H. Green Chem. 2017, 19, 5608–5613; https://doi.org/10.1039/c7gc02330h.Search in Google Scholar

85. Sahoo, H., Mandal, A., Dana, S., Baidya, M. Adv. Synth. Catal. 2018, 360, 1099–1103; https://doi.org/10.1002/adsc.201701410.Search in Google Scholar

86. Zhang, N., Zuo, H., Xu, C., Pan, J., Sun, J., Guo, C. Chin. Chem. Lett. 2020, 31, 337–340; https://doi.org/10.1016/j.cclet.2019.06.008.Search in Google Scholar

87. Wang, H., Gao, X., Lv, Z., Abdelilah, T., Lei, A. Chem. Rev. 2019, 119, 6769–6787; https://doi.org/10.1021/acs.chemrev.9b00045.Search in Google Scholar PubMed

88. Moeller, K. D. Chem. Rev. 2018, 118, 4817–4833; https://doi.org/10.1021/acs.chemrev.7b00656.Search in Google Scholar PubMed

89. Yan, M., Kawamata, Y., Baran, P. S. Chem. Rev. 2017, 117, 13230–13319; https://doi.org/10.1021/acs.chemrev.7b00397.Search in Google Scholar PubMed PubMed Central

90. Waldvogel, S. R., Lips, S., Selt, M., Riehl, B., Kampf, C. J. Chem. Rev. 2018, 118, 6706–6765; https://doi.org/10.1021/acs.chemrev.8b00233.Search in Google Scholar PubMed

91. Zhao, Y., Xia, W. Chem. Soc. Rev. 2018, 47, 2591–2608; https://doi.org/10.1039/c7cs00572e.Search in Google Scholar PubMed

92. Yan, M., Kawamata, Y., Baran, P. S. Angew. Chem. Int. Ed. 2018, 57, 4149–4155; https://doi.org/10.1002/anie.201707584.Search in Google Scholar PubMed PubMed Central

93. Hua, J., Fang, Z., Bian, M., Ma, T., Yang, M., Xu, J., Liu, C. K., He, W., Zhu, N., Yang, Z., Guo, K. ChemSusChem 2020, 13, 2053–2059; https://doi.org/10.1002/cssc.202000098.Search in Google Scholar PubMed

94. Recchi, A. M. S., Rosa, P. H. P., Back, D. F., Zeni, G. Org. Biomol. Chem. 2020, 18, 3544–3551; https://doi.org/10.1039/d0ob00609b.Search in Google Scholar PubMed

95. Sahoo, H., Grandhi, G. S., Ramakrishna, I., Baidya, M. Org. Biomol. Chem. 2019, 17, 10163–10166; https://doi.org/10.1039/c9ob02177a.Search in Google Scholar PubMed

96. Nyffeler, P. T., Durón, S. G., Burkart, M. D., Vincent, S. P., Wong, C. H. Angew. Chem. Int. Ed. 2005, 44, 192–212; https://doi.org/10.1002/anie.200400648.Search in Google Scholar PubMed

97. Liu, P., Gao, Y., Gu, W., Shen, Z., Sun, P. J. Org. Chem. 2015, 80, 11559–11565; https://doi.org/10.1021/acs.joc.5b01961.Search in Google Scholar PubMed

98. Li, J. L., Lin, E., Han, X. L., Li, Q., Wang, H. Org. Lett. 2019, 21, 4255–4258; https://doi.org/10.1021/acs.orglett.9b01428.Search in Google Scholar PubMed

99. Xu, P., Guo, S., Wang, L., Tang, P. Angew. Chem., Int. Ed. 2014, 53, 5955–5958; https://doi.org/10.1002/anie.201400225.Search in Google Scholar PubMed

100. Xie, L. Y., Qu, J., Peng, S., Liu, K. J., Wang, Z., Ding, M. H., Wang, Y., Cao, Z., He, W. M. Green Chem. 2018, 20, 760–764; https://doi.org/10.1039/c7gc03106h.Search in Google Scholar

101. Ban, Y. L., You, L., Feng, K. W., Ma, F. C., Jin, X. L., Liu, Q. J. Org. Chem. 2021, 86, 5274–5283; https://doi.org/10.1021/acs.joc.1c00167.Search in Google Scholar PubMed

102. Yang, L., Ma, Y., Song, F., You, J. Chem. Commun. 2014, 50, 3024–3026; https://doi.org/10.1039/c3cc49851d.Search in Google Scholar PubMed

103. Niu, L., Liu, J., Liang, X. A., Wang, S., Lei, A. Nat. Commun. 2019, 10, 1–7; https://doi.org/10.1038/s41467-019-08413-9.Search in Google Scholar PubMed PubMed Central

104. Xavier, M. C. D. F., Sandagorda, E. M. A., Neto, J. S. S., Schumacher, R. F., Silva, M. S. RSC Adv. 2020, 10, 13975–13983; https://doi.org/10.1039/d0ra01907k.Search in Google Scholar PubMed PubMed Central

105. Xie, L. Y., Peng, S., Liu, F., Yi, J. Y., Wang, M., Tang, Z., Xu, X., He, W. M. Adv. Synth. Catal. 2018, 360, 4259–4264; https://doi.org/10.1002/adsc.201800918.Search in Google Scholar

106. Kong, Y., Sun, X., Weng, J. Chin. J. Org. Chem. 2020, 40, 2641–2657; https://doi.org/10.6023/cjoc202004005.Search in Google Scholar

107. Wang, X., Wang, Q., Xue, Y., Sun, K., Wu, L., Zhang, B. Chem. Commun. 2020, 56, 4436–4439; https://doi.org/10.1039/d0cc01079k.Search in Google Scholar PubMed

108. Galloway, J. D., Mai, D. N., Baxter, R. D. Org. Lett. 2017, 19, 5772–5775; https://doi.org/10.1021/acs.orglett.7b02706.Search in Google Scholar PubMed

109. Liang, X. A., Niu, L., Wang, S., Liu, J., Lei, A. Org. Lett. 2019, 21, 2441–2444; https://doi.org/10.1021/acs.orglett.9b00744.Search in Google Scholar PubMed

110. Kong, Y., Yu, W., Liu, X., Weng, J. Chin. Chem. Lett. 2020, 31, 3245–3249; https://doi.org/10.1016/j.cclet.2020.05.022.Search in Google Scholar

111. Fei, H., Xu, Z., Wu, H., Zhu, L., Jalani, H. B., Li, G., Fu, Y., Lu, H. Org. Lett. 2020, 22, 2651–2656; https://doi.org/10.1021/acs.orglett.0c00620.Search in Google Scholar PubMed

112. Zhao, H., Jin, J. Org. Lett. 2019, 21, 6179–6184; https://doi.org/10.1021/acs.orglett.9b01635.Search in Google Scholar PubMed

113. Mai, W. P., Yuan, J. W., Zhu, J. L., Li, Q. Q., Yang, L. R., Xiao, Y. M., Mao, P., Qu, L. B. ChemistrySelect 2019, 4, 11066–11070; https://doi.org/10.1002/slct.201903478.Search in Google Scholar

114. Yuan, J., Zeng, F., Mai, W., Yang, L., Xiao, Y., Mao, P., Wei, D. Org. Biomol. Chem. 2019, 17, 5038–5046; https://doi.org/10.1039/c9ob00509a.Search in Google Scholar PubMed

115. Zhang, J. R., Liu, H. Y., Fan, T., Chen, Y. Y., Xu, Y. L. Adv. Synth. Catal. 2021, 363, 497–504; https://doi.org/10.1002/adsc.202000983.Search in Google Scholar

116. Belladona, A. L., Cervo, R., Alves, D., Barcellos, T., Cargnelutti, R., Schumacher, R. F. Tetrahedron Lett. 2020, 61, 152035; https://doi.org/10.1016/j.tetlet.2020.152035.Search in Google Scholar


Supplementary Material

The online version of this article offers supplementary material (https://doi.org/10.1515/znb-2021-0154).


Received: 2021-09-20
Accepted: 2021-11-23
Published Online: 2021-12-06
Published in Print: 2022-01-27

© 2021 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 19.4.2024 from https://www.degruyter.com/document/doi/10.1515/znb-2021-0154/html
Scroll to top button