Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter October 15, 2020

Intergrowth of niobium tungsten oxides of the tetragonal tungsten bronze type

  • Frank Krumeich EMAIL logo

Abstract

Since the 1970s, high-resolution transmission electron microscopy (HRTEM) is well established as the most appropriate method to explore the structural complexity of niobium tungsten oxides. Today, scanning transmission electron microscopy (STEM) represents an important alternative for performing the structural characterization of such oxides. STEM images recorded with a high-angle annular dark field (HAADF) detector provide not only information about the cation positions but also about the distribution of niobium and tungsten as the intensity is directly correlated to the local scattering potential. The applicability of this method is demonstrated here for the characterization of the real structure of Nb7W10O47.5. This sample contains well-ordered domains of Nb8W9O47 and Nb4W7O31 besides little ordered areas according to HRTEM results. Structural models for Nb4W7O31 and twinning occurring in this phase have been derived from the interpretation of HAADF-STEM images. A remarkable grain boundary between well-ordered domains of Nb4W7O31 and Nb8W9O47 has been found that contains one-dimensionally periodic features. Furthermore, short-range order observed in less ordered areas could be attributed to an intimate intergrowth of small sections of different tetragonal tungsten bronze (TTB) based structures.


Dedicated to: Professor Robert Glaum on the occasion of his 60th birthday.



Corresponding author: Frank Krumeich, Department of Chemistry and Applied Biosciences, Laboratory of Inorganic Chemistry, ETH Zürich, Vladimir-Prelog-Weg 1, 8093 Zürich, Switzerland, E-mail:

Acknowledgments

Electron microscopy was performed at the Scientific Center for Optical and Electron Microscopy (ScopeM) of ETH Zurich. Prof. A. Hussain (University of Dhaka, Bangladesh) is acknowledged for providing the sample.

  1. Author contribution: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: None declared.

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

1. Roth, R. S., Waring, J. L. J. Res. Nat. Bur. Stand. 1966, 70A, 281–303; https://doi.org/10.6028/jres.070a.025.Search in Google Scholar

2. Diehl, R., Brandt, G., Salje, E. Acta Crystallogr. 1978, B34, 1105–1111; https://doi.org/10.1107/s0567740878005014.Search in Google Scholar

3. England, P. J., Booth, J., Tilley, R. J., Ekström, T. J. Solid State Chem. 1982, 44, 60–74; https://doi.org/10.1016/0022-4596(82)90401-7.Search in Google Scholar

4. Roth, R. S., Wadsley, A. D. Acta Crystallogr. 1965, 19, 42–47; https://doi.org/10.1107/s0365110x65002748.Search in Google Scholar

5. Gruehn, R. Nat. Bur. Stand. Spec. Publ. 1972, 364, 63–86.Search in Google Scholar

6. Lundberg, M., Sundberg, M., Magneli, A. J. Solid State Chem. 1982, 44, 32–40; https://doi.org/10.1016/0022-4596(82)90398-x.Search in Google Scholar

7. Obayashi, H., Anderson, J. S. J. Solid State Chem. 1976, 17, 79–89; https://doi.org/10.1016/0022-4596(76)90205-x.Search in Google Scholar

8. Viccary, M. W., Tilley, R. J. J. Solid State Chem. 1993, 104, 131–148; https://doi.org/10.1006/jssc.1993.1147.Search in Google Scholar

9. Sleight, A. W. Acta Chem. Scand. 1966, 20, 1102–1112; https://doi.org/10.3891/acta.chem.scand.20-1102.Search in Google Scholar

10. Krumeich, F., Hussain, A., Bartsch, C., Gruehn, R. Z. Anorg. Allg. Chem. 1995, 621, 799–806; https://doi.org/10.1002/zaac.19956210517.Search in Google Scholar

11. Griffith, K. J., Wiaderek, K. M., Cibin, G., Marbella, L. E., Grey, C. P. Nature 2018, 559, 556–563; https://doi.org/10.1038/s41586-018-0347-0.Search in Google Scholar PubMed

12. Ye, W., Yu, H., Cheng, X., Zhu, H., Zheng, R., Liu, T., Long, N., Shui, M., Shu, J. Electrochim. Acta 2018, 292, 331–338; https://doi.org/10.1016/j.electacta.2018.09.169.Search in Google Scholar

13. Montemayor, S. M., Alvarez Mendez, A., Martínez-de la Cruz, A., Fuentes, A. F., Torres Martínez, L. M. J. Mater. Chem. 1998, 8, 2777–2781; https://doi.org/10.1039/a804410d.Search in Google Scholar

14. Martinez-de la Cruz, A., Juarez Ramirez, I., Torres Gonzalez, L. C. Mater. Res. Bull. 2003, 38, 525–531; https://doi.org/10.1016/s0025-5408(02)01057-7.Search in Google Scholar

15. Hyde, B. G., O’Keefe, M. Acta Crystallogr. 1973, A29, 243–248; https://doi.org/10.1107/s056773947300063x.Search in Google Scholar

16. Marinder, B.-O. Angew. Chem. Int. Ed. 1986, 25, 431–442; https://doi.org/10.1002/anie.198604311.Search in Google Scholar

17. Iijima, S., Allpress, J. G. Acta Crystallogr. 1974, A30, 22–29; https://doi.org/10.1107/s0567739474000039.Search in Google Scholar

18. Pennycook, S. J. Ultramicroscopy 1989, 30, 58–69; https://doi.org/10.1016/0304-3991(89)90173-3.Search in Google Scholar

19. Klie, R. F., Zhu, Y. Micron 2005, 36, 219–231; https://doi.org/10.1016/j.micron.2004.12.003.Search in Google Scholar PubMed

20. Kirkland, A. I., Saxton, W. O. J. Microsc. 2002, 206, 1–6; https://doi.org/10.1046/j.1365-2818.2002.01002.x.Search in Google Scholar PubMed

21. Krumeich, F., Nesper, R. J. Solid State Chem. 2006, 179, 1857–1863; https://doi.org/10.1016/j.jssc.2006.02.020.Search in Google Scholar

22. Krumeich, F. J. Solid State Chem. 1995, 119, 420–427; https://doi.org/10.1016/0022-4596(95)80061-s.Search in Google Scholar

23. Krumeich, F., Bartsch, C., Gruehn, R. J. Solid State Chem. 1995, 120, 268–274; https://doi.org/10.1006/jssc.1995.1408.Search in Google Scholar

24. De Ridder, R., Van Tendeloo, G., Van Dyck, D., Amelinckx, S. Phys. Stat. Sol. 1977, 41, 555–560; https://doi.org/10.1002/pssa.2210410227.Search in Google Scholar

25. Iijima, S., Cowley, J. M. J. Phys. Colloq. 1977, 38, C7-135–C7-144; https://doi.org/10.1051/jphyscol:1977726.10.1051/jphyscol:1977726Search in Google Scholar

26. Krumeich, F. Acta Crystallogr. 1998, B54, 240–249; https://doi.org/10.1107/s010876819701971x.Search in Google Scholar

27. Van Tendeloo, G., Hadermann, J., Abakumov, A. M., Antipov, E. V. J. Mater. Chem. 2009, 19, 2660–2670; https://doi.org/10.1039/b817914j.Search in Google Scholar

28. Krumeich, F., Liedtke, G., Mader, W. Z. Anorg. Allg. Chem. 1997, 623, 990–996; https://doi.org/10.1002/zaac.199762301155.Search in Google Scholar

29. Krumeich, F., Wörle, M., Hussain, A. J. Solid State Chem. 2000, 149, 428–433; https://doi.org/10.1006/jssc.1999.8575.Search in Google Scholar

Received: 2020-07-02
Accepted: 2020-09-07
Published Online: 2020-10-15
Published in Print: 2020-11-26

© 2020 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 25.4.2024 from https://www.degruyter.com/document/doi/10.1515/znb-2020-0107/html
Scroll to top button