Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter (O) June 1, 2023

Crystal structure of 9,10-bis-((perchloro-phenyl)-ethynyl)anthracene determined from three-dimensional electron diffraction data

  • Tatiana E. Gorelik EMAIL logo , Andreas Ulmer , A. Lennart Schleper and Alexander J.C. Kuehne

Abstract

The crystal structure of the title compound was determined using electron diffraction data collected in continuous rotation mode. The structure was successfully solved and refined kinematically in the monoclinic space group P21/c, with a Z value of 2 and Z′ value of 0.5. Within the crystal structure, the entire molecule is predominantly flat. The molecular packing exhibits a herringbone pattern, distinct from that of the unchlorinated analogue molecule. The largest facet of the crystals, which faces the supporting carbon film, is designated as (0 1 1 ).


Corresponding author: Tatiana E. Gorelik, Helmholtz Centre for Infection Research, SFPR, Inhoffenstraße 7, 38124, Braunschweig, Germany; and Helmholtz Institute for Pharmaceutical Research Saarland, MINS, Universitätscampus E8 1, 66123 Saarbrücken, Germany, E-mail:

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: None declared.

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

1. Gruene, T., Wennmacher, J. T. C., Zaubitzer, C., Holstein, J. J., Heidler, J., Fecteau-Lefebvre, A., De Carlo, S., Müller, E., Goldie, K. N., Regeni, I., Li, T., Santiso-Quinones, G., Steinfeld, G., Handschin, S., van Genderen, E., van Bokhoven, J. A., Clever, G. H., Pantelic, R. Rapid structure determination of microcrystalline molecular compounds using electron diffraction. Angew. Chem. Int. Ed. 2018, 57, 16313; https://doi.org/10.1002/anie.201811318.Search in Google Scholar PubMed PubMed Central

2. Jones, C. G., Martynowycz, M. W., Hattne, J., Fulton, T. J., Stoltz, B. M., Rodriguez, J. A., Nelson, H. M., Gonen, T. The CryoEM method MicroED as a powerful tool for small molecule structure determination. ACS Cent. Sci. 2018, 4, 1587–1592; https://doi.org/10.1021/acscentsci.8b00760.Search in Google Scholar PubMed PubMed Central

3. Gemmi, M., Mugnaioli, E., Gorelik, T. E., Kolb, U., Palatinus, L., Boullay, P., Hovmöller, S., Abrahams, J. P. 3D electron diffraction: the nanocrystallography revolution. ACS Cent. Sci. 2019, 5, 1315–1329; https://doi.org/10.1021/acscentsci.9b00394.Search in Google Scholar PubMed PubMed Central

4. Nederlof, I., van Genderen, E., Li, Y. W., Abrahams, J. P. A Medipix quantum area detector allows rotation electron diffraction data collection from submicrometre three-dimensional protein crystals. Acta Crystallogr. 2013, D69, 1223–1230; https://doi.org/10.1107/s0907444913009700.Search in Google Scholar PubMed PubMed Central

5. Nannenga, B. L., Shi, D., Leslie, A. G. W., Gonen, T. High-resolution structure determination by continuous-rotation data collection in MicroED. Nat. Methods 2014, 11, 927–930; https://doi.org/10.1038/nmeth.3043.Search in Google Scholar PubMed PubMed Central

6. Polniaszek, R. P., Belmont, S. E., Alvarez, R. Stereoselective nucleophilic additions to the carbon-nitrogen double bond. 3. Chiral acyliminium ions. J. Org. Chem. 1990, 55, 215–223; https://doi.org/10.1021/jo00288a036.Search in Google Scholar

7. Saito, S., Itoh, M., Fujisawa, T., Saito, H., Kiyotsuka, Y., Watanabe, H., Matsunaga, H., Kagoshima, Y., Suzuki, T., Ogawara, Y., Kitabayashi, K. Isoxazole derivative as mutated isocitrate dehydrogenase 1 Inhibitor. EP3202766, 2017.Search in Google Scholar

8. Micozzi, A., Ottaviani, M., Giardina, G., Ricci, A., Pizzoferrato, R., Ziller, T., Compagnone, D., Lo Sterzo, C. Use of the Pd-promoted extended one-pot (EOP) synthetic protocol for the modular construction of poly-(arylene ethynylene) co-polymers [–Ar–C≡C–Ar′–C≡C–]n, opto- and electro-responsive materials for advanced technology. Adv. Synth. Catal. 2005, 347, 143–160; https://doi.org/10.1002/adsc.200404233.Search in Google Scholar

9. Reimer, L., Kohl, H. Transmission Electron Microscopy; Springer: New York, 2008.Search in Google Scholar

10. Palatinus, L., Brazda, P., Jelinek, M., Hrda, J., Steciuk, G., Klementova, M. Specifics of the data processing of precession electron diffraction tomography data and their implementation in the program PETS2.0. Acta Crystallogr. 2019, B75, 512–522; https://doi.org/10.1107/s2052520619007534.Search in Google Scholar PubMed

11. Sheldrick, G. M. Crystal structure refinement with SHELXL. Acta Crystallogr. 2015, C71, 3–8; https://doi.org/10.1107/s2053229614024218.Search in Google Scholar

12. Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K., Puschmann, H. Olex2 : a complete structure solution, refinement. J. Appl. Crystallogr. 2009, 42, 339–341; https://doi.org/10.1107/s0021889808042726.Search in Google Scholar

13. Doyle, P. A., Turner, P. S. Relativistic Hartree-Foek X-ray and electron scattering factors. Acta Crystallogr. 1968, A24, 390–397; https://doi.org/10.1107/s0567739468000756.Search in Google Scholar

14. Peng, L.-M., Ren, G., Dudarev, S. L., Whelan, M. J. Robust parameterization of elastic and absorptive electron atomic scattering factors. Acta Crystallogr. 1996, A52, 257–276; https://doi.org/10.1107/s0108767395014371.Search in Google Scholar

15. Prince, E., Ed. International Tables for Crystallography. Vol. C, Mathematical, Physical and Chemical Tables; Kluwer Academic Publishers, 2004. Table 4.3.2.2.Search in Google Scholar

16. Prince, E., Ed. International Tables for Crystallography. Vol. C, Mathematical, Physical and Chemical Tables; Kluwer Academic Publishers, 2004. Table 4.3.1.1.Search in Google Scholar

17. Samperisi, L., Zou, X., Huang, Z. How to get maximum structure information from anisotropic displacement parameters obtained by three-dimensional electron diffraction: an experimental study on metal-organic frameworks. IUCrJ 2022, 9, 480–491; https://doi.org/10.1107/s2052252522005632.Search in Google Scholar

18. Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M., Wood, P. A. Mercury 4.0: from visualization to analysis, design and prediction. J. Appl. Crystallogr. 2020, 53, 226–235; https://doi.org/10.1107/s1600576719014092.Search in Google Scholar PubMed PubMed Central

19. Wang, C., Liu, Y., Ji, Z., Wang, E., Li, R., Jiang, H., Tang, Q., Li, H., Hu, W. Naphthyl substituted anthracene combining charge transport with light emission. Chem. Mater. 2009, 21, 2840–2845; https://doi.org/10.1021/cm900511g.Search in Google Scholar

20. Wang, C., Liu, Y., Wei, Z., Li, H., Xu, W., Hu, W. Biphase micro/nanometer sized single crystals of organic semiconductors: control synthesis and their strong phase dependent optoelectronic properties Appl. Phys. Lett. 2010, 96, 143302; https://doi.org/10.1063/1.3383222.Search in Google Scholar

21. Curtis, M. D., Cao, J., Kampf, J. W. Solid-state packing of conjugated oligomers: from π-stacks to the herringbone structure. J. Am. Chem. Soc. 2004, 126, 4318–4328; https://doi.org/10.1021/ja0397916.Search in Google Scholar PubMed

22. Milita, S., Liscio, F., Cowen, L., Cavallini, M., Drain, B. A., Degousée, T., Luong, S., Fenwick, O., Guagliardi, A., Schroeder, B. C., Masciocchi, N. Polymorphism in N,N′-dialkyl-naphthalene diimides. J. Mater. Chem. C 2020, 8, 3097–3112; https://doi.org/10.1039/c9tc06967d.Search in Google Scholar

23. Gorelik, T. E., Habermehl, S., Shubin, A. A., Gruene, T., Yoshida, K., Oleynikov, P., Kaiser, U., Schmidt, M. U. Crystal structure of copper perchlorophthalocyanine analysed by 3D electron diffraction. Acta Crystallogr. 2021, B77, 662–675; https://doi.org/10.1107/s2052520621006806.Search in Google Scholar

24. Randle, V. Introduction To Texture Analysis: Macrotexture, Microtexture, and Orientation Mapping, 2nd ed.; CRC Press: Boca Raton, 2009.Search in Google Scholar

25. Kolb, U., Gorelik, T., Mugnaioli, E. Automated diffraction tomography combined with electron precession: a new tool for ab initio nanostructure analysis. In Materials Research Society Symposia Proceedings 1184 Warrendale PA, USA, GG01-05, 2009.10.1557/PROC-1184-GG01-05Search in Google Scholar


Supplementary Material

This article contains supplementary material (https://doi.org/10.1515/zkri-2023-0009).


Received: 2023-02-14
Accepted: 2023-05-15
Published Online: 2023-06-01
Published in Print: 2023-07-26

© 2023 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 18.4.2024 from https://www.degruyter.com/document/doi/10.1515/zkri-2023-0009/html
Scroll to top button