Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter (O) November 29, 2021

Synthesis and coordination to the coinage metals of a trimethylpyrazolyl substituted 3-arylacetylacetone

  • Steven van Terwingen

    Steven van Terwingen fell in love with chemistry in school back in 2010, when exploring dyes and their pH-dependent coloration. After receiving his qualification for higher education at the Nelly-Sachs-Gymnasium in Neuss in July 2013, he started studying chemistry at RWTH Aachen University in October of the same year. In late 2016, he first came into touch with single crystal X-ray diffraction (SCXRD) during a research project in Ulli Englert’s group. He immediately was mesmerized by the absolute nature of this method and proceeded his scientific career with his master thesis under the supervision of Ulli Englert in November 2018. He is currently working on his Ph.D. thesis in the same group, investigating novel heteroditopic ligands for the rational design of bimetallic coordination polymers. He examines these coordination polymers to serve as precursors for heterogeneous catalysts, which can catalyze important decomposition reactions of greenhouse gases to counteract climate change. In the future he hopes to combine his interests in organic chemistry and SCXRD to develop and characterize new pharmaceuticals.

    ORCID logo EMAIL logo
    , Noah Nachtigall and Ulli Englert ORCID logo

Abstract

The ligand 3-(4-(1,3,5-trimethyl-1H-pyrazol-4-yl)phenyl)acetylacetone (1) combines a Pearson hard O,O′ chelating acetylacetone donor with a softer pyrazole N donor bridged by a phenylene spacer. Deprotonation and coordination to CuII leads to a square planar bis-acetylacetonato complex; interpreting the close proximity of an adjacent complex’s pyrazole moiety as an η 2 coordination to the axial CuII position leads to a two dimensional extended structure. The N donor capabilities are proven by coordination to AgPF6 and AuCl; for AgI a cationic linear bis-pyrazole complex as a toluene solvate is obtained with toluene-pyrazole π-interactions and an essentially uncoordinated PF 6 - anion. In the case of AuCl a neutral linear coordination compound with one chlorido and one pyrazole ligand 1 is obtained. Comparing the dihedral angles with a closely related but shorter ligand reveals a larger rotational degree of freedom in 1, allowing for richer architectures in emerging coordination polymers.


Corresponding author: Steven van Terwingen, Institute of Inorganic Chemistry, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany, E-mail:

About the author

Steven van Terwingen

Steven van Terwingen fell in love with chemistry in school back in 2010, when exploring dyes and their pH-dependent coloration. After receiving his qualification for higher education at the Nelly-Sachs-Gymnasium in Neuss in July 2013, he started studying chemistry at RWTH Aachen University in October of the same year. In late 2016, he first came into touch with single crystal X-ray diffraction (SCXRD) during a research project in Ulli Englert’s group. He immediately was mesmerized by the absolute nature of this method and proceeded his scientific career with his master thesis under the supervision of Ulli Englert in November 2018. He is currently working on his Ph.D. thesis in the same group, investigating novel heteroditopic ligands for the rational design of bimetallic coordination polymers. He examines these coordination polymers to serve as precursors for heterogeneous catalysts, which can catalyze important decomposition reactions of greenhouse gases to counteract climate change. In the future he hopes to combine his interests in organic chemistry and SCXRD to develop and characterize new pharmaceuticals.

Acknowledgement

S.v.T. gratefully acknowledges an RWTH fellowship for doctoral students.

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: None declared.

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

1. Batten, S. R., Neville, S. M., Turner, D. R. Coordination Polymers: Design, Analysis and Application, 1st ed.; RSC Publishing: Cambridge, 2009.Search in Google Scholar

2. Duan, J., Jin, W., Kitagawa, S. Coord. Chem. Rev. 2017, 332, 48–74; https://doi.org/10.1016/j.ccr.2016.11.004.Search in Google Scholar

3. Zheng, F., Guo, L., Gao, B., Li, L., Zhang, Z., Yang, Q., Yang, Y., Su, B., Ren, Q., Bao, Z. ACS Appl. Mater. Interfaces 2019, 11, 28197–28204; https://doi.org/10.1021/acsami.9b09231.Search in Google Scholar PubMed

4. Lin, J.-B., Zhang, J.-P., Chen, X.-M. J. Am. Chem. Soc. 2010, 132, 6654–6656; https://doi.org/10.1021/ja1009635.Search in Google Scholar PubMed

5. Wang, F., Kusaka, S., Hijikata, Y., Hosono, N., Kitagawa, S. ACS Appl. Mater. Interfaces 2017, 9, 33455–33460; https://doi.org/10.1021/acsami.7b01568.Search in Google Scholar PubMed

6. Huang, X., Yao, H., Cui, Y., Hao, W., Zhu, J., Xu, W., Zhu, D. ACS Appl. Mater. Interfaces 2017, 9, 40752–40759; https://doi.org/10.1021/acsami.7b14523.Search in Google Scholar PubMed

7. Zhou, Z., He, C., Yang, L., Wang, Y., Liu, T., Duan, C. ACS Catal. 2017, 7, 2248–2256; https://doi.org/10.1021/acscatal.6b03404.Search in Google Scholar

8. Rogovoy, M. I., Berezin, A. S., Kozlova, Y. N., Samsonenko, D. G., Artem’ev, A. V. Inorg. Chem. Commun. 2019, 108, 107513; https://doi.org/10.1016/j.inoche.2019.107513.Search in Google Scholar

9. Zheng, K., Liu, Z., Jiang, Y., Guo, P., Li, H., Zeng, C., Ng, S. W., Zhong, S. Dalton Trans. 2018, 47, 17432–17440; https://doi.org/10.1039/c8dt03832e.Search in Google Scholar PubMed

10. Jana, S., Karim, S., Paul, S., Zangrando, E., Fallah, M. S. E., Das, D., Sinha, C. J. Mol. Struct. 2021, 1245, 131058; https://doi.org/10.1016/j.molstruc.2021.131058.Search in Google Scholar

11. Zhang, J.-W., Zhang, R.-J., Ren, Y.-N., Li, J.-X., Liu, B.-Q., Dong, Y.-P. J. Mol. Struct. 2018, 1173, 552–556; https://doi.org/10.1016/j.molstruc.2018.07.004.Search in Google Scholar

12. Cui, Y.-F., Zhang, Y., Xie, K.-F., Dong, W.-K. Crystals 2019, 9, 596; https://doi.org/10.3390/cryst9110596.Search in Google Scholar

13. Wang, T., Liu, X., Zhu, Y., Cui, Z. D., Yang, X. J., Pan, H., Yeung, K. W. K., Wu, S. ACS Biomater. Sci. Eng. 2017, 3, 816–825; https://doi.org/10.1021/acsbiomaterials.7b00103.Search in Google Scholar PubMed

14. Kremer, M., Englert, U. Z. Kristallogr. 2018, 233, 437–452; https://doi.org/10.1515/zkri-2017-2131.Search in Google Scholar

15. Kondracka, M., Englert, U. Inorg. Chem. 2008, 47, 10246–10257; https://doi.org/10.1021/ic800748f.Search in Google Scholar PubMed

16. Merkens, C., Truong, K.-N., Englert, U. Acta Crystallogr. 2014, B70, 705–713; https://doi.org/10.1107/s2052520614006210.Search in Google Scholar PubMed

17. Guo, Q., Englert, U. Cryst. Growth Des. 2016, 16, 5127–5135; https://doi.org/10.1021/acs.cgd.6b00710.Search in Google Scholar

18. Gildenast, H., Nölke, S., Englert, U. CrystEngComm 2020, 22, 1041–1049; https://doi.org/10.1039/c9ce01932d.Search in Google Scholar

19. Burrows, A. D., Cassar, K., Mahon, M. F., Warren, J. E. Dalton Trans. 2007, 2499–2509; https://doi.org/10.1039/b702074k.Search in Google Scholar PubMed

20. Vreshch, V. D., Chernega, A. N., Howard, J. A. K., Sieler, J., Domasevitch, K. V. Dalton Trans. 2003, 1707–1711; https://doi.org/10.1039/b212733d.Search in Google Scholar

21. Vreshch, V. D., Lysenko, A. B., Chernega, A. N., Sieler, J., Domasevitch, K. V. Polyhedron 2005, 24, 917–926; https://doi.org/10.1016/j.poly.2005.02.023.Search in Google Scholar

22. Chen, Z.-M., Cui, Y., Jiang, X.-F., Tong, J., Yu, S.-Y. Chem. Commun. 2017, 53, 4238–4241; https://doi.org/10.1039/c7cc00425g.Search in Google Scholar PubMed

23. Aggarwal, V. K., de Vicente, J., Bonnert, R. V. J. Org. Chem. 2003, 68, 5381–5383; https://doi.org/10.1021/jo0268409.Search in Google Scholar PubMed

24. Vuluga, D., Legros, J., Crousse, B., Bonnet-Delpon, D. Green Chem. 2009, 11, 156–159; https://doi.org/10.1039/b812242c.Search in Google Scholar

25. Sharko, A. V., Senchyk, G. A., Rusanov, E. B., Domasevitch, K. V. Tetrahedron Lett. 2015, 56, 6089–6092; https://doi.org/10.1016/j.tetlet.2015.09.072.Search in Google Scholar

26. Knorr, L. Ber. Dtsch. Chem. Ges. 1883, 16, 2597–2599; https://doi.org/10.1002/cber.188301602194.Search in Google Scholar

27. Lozan, V., Solntsev, P. Y., Leibeling, G., Domasevitch, K. V., Kersting, B. Eur. J. Inorg. Chem. 2007, 2007, 3217–3226; https://doi.org/10.1002/ejic.200700317.Search in Google Scholar

28. van Terwingen, S., Nachtigall, N., Ebel, B., Englert, U. Cryst. Growth Des. 2021, 21, 2962–2969; https://doi.org/10.1021/acs.cgd.1c00122.Search in Google Scholar

29. Gunawardana, C. A., Sinha, A. S., Desper, J., Đaković, M., Aakeröy, C. B. Cryst. Growth Des. 2018, 18, 6936–6945; https://doi.org/10.1021/acs.cgd.8b01140.Search in Google Scholar

30. Ramirez, F., Bhatia, S. B., Patwardhan, A. V., Smith, C. P. J. Org. Chem. 1967, 32, 3547–3553; https://doi.org/10.1021/jo01286a058.Search in Google Scholar

31. Spek, A. L. Acta Crystallogr. 2009, D65, 148–155; https://doi.org/10.1107/s090744490804362x.Search in Google Scholar PubMed PubMed Central

32. Chen, I.-H., Yin, L., Itano, W., Kanai, M., Shibasaki, M. J. Am. Chem. Soc. 2009, 131, 11664–11665; https://doi.org/10.1021/ja9045839.Search in Google Scholar PubMed

33. Ustinov, I. I., Blokhin, I. V., Shumskii, A. N., Fedyanin, I. V., Strashnov, P. V., Ryabov, M. A., Atroshchenko, Y. M., Shakhkel’dyan, I. V. Russ. J. Org. Chem. 2017, 53, 557–561; https://doi.org/10.1134/s1070428017040091.Search in Google Scholar

34. Groom, C. R., Bruno, I. J., Lightfoot, M. P., Ward, S. C. Acta Crystallogr. 2016, B72, 171–179; https://doi.org/10.1107/s2052520616003954.Search in Google Scholar

35. Addison, A. W., Rao, T. N., Reedijk, J., van Rijn, J., Verschoor, G. C. J. Chem. Soc., Dalton Trans. 1984, 1349–1356; https://doi.org/10.1039/dt9840001349.Search in Google Scholar

36. Emeleus, L. C., Cupertino, D. C., Harris, S. G., Owens, S., Parsons, S., Swart, R. M., Tasker, P. A., White, D. J. J. Chem. Soc., Dalton Trans. 2001, 1239–1245; https://doi.org/10.1039/b101780m.Search in Google Scholar

37. Levchenkov, S. I., Shcherbakov, I. N., Popov, L. D., Vlasenko, V. G., Suponitskii, K. Y., Tsaturyan, A. A., Lukov, V. V., Kogan, V. A. Russ. J. Coord. Chem. 2014, 40, 523–530; https://doi.org/10.1134/s1070328414080041.Search in Google Scholar

38. Zhu, H., Wang, Z., Wei, Z., Bai, Y., Xv, X. Acta Crystallogr. 2011, E67, m1208; https://doi.org/10.1107/s1600536811030753.Search in Google Scholar

39. O’Keeffe, M., Peskov, M. A., Ramsden, S. J., Yaghi, O. M. Acc. Chem. Res. 2008, 41, 1782–1789.10.1021/ar800124uSearch in Google Scholar PubMed

40. Konkol, M., Kondracka, M., Kowalik, P., Próchniak, W., Michalska, K., Schwedt, A., Merkens, C., Englert, U. Appl. Catal. B 2016, 190, 85–92; https://doi.org/10.1016/j.apcatb.2016.02.062.Search in Google Scholar

41. Dias, H. V. R., Gamage, C. S. P. Angew. Chem. Int. Ed. 2007, 46, 2192–2194; https://doi.org/10.1002/anie.200604585.Search in Google Scholar PubMed

42. Lv, X.-L., Yuan, S., Xie, L.-H., Darke, H. F., Chen, Y., He, T., Dong, C., Wang, B., Zhang, Y.-Z., Li, J.-R., Zhou, H.-C. J. Am. Chem. Soc. 2019, 141, 10283–10293; https://doi.org/10.1021/jacs.9b02947.Search in Google Scholar PubMed

43. Uson, R., Laguna, A., Laguna, M., Briggs, D. A., Murray, H. H., Fackler, J. P. In Inorganic Syntheses, Volume 103 of Inorganic Syntheses; Kaesz, H. D., Ed.; John Wiley & Sons, Inc: Hoboken, NJ, USA, 1989; pp. 85–91.10.1002/9780470132579.ch17Search in Google Scholar

44. Bruker. Smart and Saint+, 2009.Search in Google Scholar

45. Bruker. Sadabs, 2008.Search in Google Scholar

46. STOE. x-Area & Lana, 2020.Search in Google Scholar

47. Sheldrick, G. M. Acta Crystallogr. 2015, A71, 3–8; https://doi.org/10.1107/s2053229614024218.Search in Google Scholar

48. Sheldrick, G. M. Acta Crystallogr. 2015, C71, 3–8.Search in Google Scholar


Supplementary Material

The online version of this article offers supplementary material (https://doi.org/10.1515/zkri-2021-2059).


Received: 2021-10-11
Accepted: 2021-11-06
Published Online: 2021-11-29
Published in Print: 2022-05-25

© 2021 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 19.4.2024 from https://www.degruyter.com/document/doi/10.1515/zkri-2021-2059/html
Scroll to top button