Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter (O) January 28, 2017

Scaled-up solvothermal synthesis of nanosized metastable indium oxyhydroxide (InOOH) and corundum-type rhombohedral indium oxide (rh-In2O3)

  • Lukas Schlicker EMAIL logo , Maged F. Bekheet and Aleksander Gurlo

Abstract

Phase pure metastable indium oxyhydroxide (InOOH) with crystallite size in the range ca. 2–7 nm is synthesized by a nonaqueous solvothermal synthesis route in ethanol. The influence of synthesis parameters such as temperature, basicity (pH), synthesis time, and water content is carefully addressed. T-pH maps summarize the impact of synthesis temperature and pH and reveal that phase pure InOOH is obtained in water-free solutions at mild temperatures (150–180°C) in highly basic conditions (pH>12). Subsequent calcination of InOOH at 375–700°C in ambient air atmosphere results in metastable nanoscaled rhombohedral indium oxide (rh-In2O3). The synthesis protocol for phase pure nanocrystalline InOOH material was successfully upscaled allowing for obtaining ca. 3 g of phase-pure InOOH with a yield of ca. 78%. The upscaled InOOH and rh-In2O3 batches are now available for a detailed in-situ characterization of the mechanism of decomposition of InOOH to rh-In2O3 to c-In2O3 as well as for the characterization of the functional properties of InOOH and rh-In2O3 materials.

Acknowledgments

The authors acknowledge the DFG for financial support (grant GU 992/12-1) within the framework of the focused program “Kristalline Nichtgleichgewichtsphasen – Präparation, Charakterisierung und in-situ Untersuchung der Bildungsmechanismen (SPP 1415). One of the authors (L.S.) greatly appreciates support from Prof. Dr. Ralf Riedel during his stay at the Fachgebiet “Disperse Feststoffe” at the Technische Universitaet Darmstadt. The authors thank the Advanced Light Source (which is supported by the Director, Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231) and in particular the beam line 12.2.2 scientists Andrew Doran and Martin Kunz where in-situ heating synchrotron PXRD measurements were conducted.

References

[1] A. Walsh, J. L. F. Da Silva, S. H. Wei, Multi-component transparent conducting oxides: progress in materials modelling. J. Phys-Condens. Mat.2011, 23, 334210.10.1088/0953-8984/23/33/334210Search in Google Scholar PubMed

[2] E. Guilmeau, D. Berardan, C. Simon, A. Maignan, B. Raveau, D. O. Ovono, F. Delorme, Tuning the transport and thermoelectric properties of In2O3 bulk ceramics through doping at In-site. J. Appl. Phys.2009,106, 053715.10.1063/1.3197064Search in Google Scholar

[3] A. Gurlo, Nanosensors: towards morphological control of gas sensing activity. SnO2, In2O3, ZnO and WO3 case studies. Nanoscale2011, 3, 154.10.1039/C0NR00560FSearch in Google Scholar

[4] T. de Boer, M. F. Bekheet, A. Gurlo, R. Riedel, A. Moewes, Band gap and electronic structure of cubic, rhombohedral, and orthorhombic In2O3 polymorphs: experiment and theory. Phys. Rev. B2016, 93, 155205.10.1103/PhysRevB.93.155205Search in Google Scholar

[5] L. Pauling, M. D. Shappell, The crystal structure of bixbyite and the C-modification of the sesquioxides. Z. Kristallogr.1930, 75, 128.10.1515/zkri-1930-0109Search in Google Scholar

[6] C. T. Prewitt, R. D. Shannon, D. B. Rogers, A. W. Sleight, The C rare earth oxide-corundum transition and crystal chemistry of oxides having corundum structure. Inorg. Chem.1969, 8, 1985.10.1021/ic50079a033Search in Google Scholar

[7] A. J. Downs, Chemistry of Aluminium, Gallium, Indium and Thallium, Springer Verlag, 2013.Search in Google Scholar

[8] C. M. Q. Wells, Structural Inorganic Chemistry, Oxford University Press, Oxford, 1984.Search in Google Scholar

[9] N. N. Greenwood, A. Earnshaw, Chemistry of the Elements, Pergamon Press, Oxford, 1985.Search in Google Scholar

[10] H. Yusa, T. Tsuchiya, N. Sata, Y. Ohishi, Rh2O3(II)-type structures in Ga2O3 and In2O3 under high pressure: experiment and theory. Phys. Rev. B2008, 77, 064107.10.1103/PhysRevB.77.064107Search in Google Scholar

[11] M. Epifani, P. Siciliano, A. Gurlo, N. Barsan, U. Weimar, Ambient pressure synthesis of corundum-type In2O3. J. Am. Chem. Soc.2004, 126, 4078.10.1021/ja0318075Search in Google Scholar PubMed

[12] H. Saitoh, W. Utsumi, K. Aoki, Solid-phase grain growth of In2O3 at high pressures and temperatures. J. Cryst. Growth2008, 310, 2295.10.1016/j.jcrysgro.2007.11.004Search in Google Scholar

[13] H. Yusa, T. Tsuchiya, J. Tsuchiya, N. Sata, Y. Ohishi, α-Gd2S3-type structure in In2O3: Experiments and theoretical confirmation of a high-pressure polymorph in sesquioxide. Phys. Rev. B2008, 78, 092107.10.1103/PhysRevB.78.092107Search in Google Scholar

[14] K. Umemoto, R. M. Wentzcovitch, Effect of the d electrons on phase transitions in transition-metal sesquioxides. Phys. Chem. Miner.2011, 38, 387.10.1007/s00269-010-0412-1Search in Google Scholar

[15] A. Walsh, C. R. A. Catlow, A. A. Sokol, S. M. Woodley, Physical properties, intrinsic defects, and phase stability of indium sesquioxide. Chem. Mater.2009, 21, 4962.10.1021/cm902280zSearch in Google Scholar

[16] M. F. Bekheet, M. R. Schwarz, S. Lauterbach, H. J. Kleebe, P. Kroll, R. Riedel, A. Gurlo, Orthorhombic In2O3: a metastable polymorph of indium sesquioxide. Angew Chem. Int. Ed.2013, 52, 6531.10.1002/anie.201300644Search in Google Scholar

[17] M. F. Bekheet, M. R. Schwarz, P. Kroll, A. Gurlo, Kinetic control in the synthesis of metastable polymorphs: bixbyite-to-Rh2O3(II)-to-corundum transition in In2O3. J. Solid State Chem.2015, 229, 278.10.1016/j.jssc.2015.06.007Search in Google Scholar

[18] M. F. Bekheet, M. R. Schwarz, S. Lauterbach, H. J. Kleebe, P. Kroll, A. Stewart, U. Kolb, R. Riedel, A. Gurlo, In situ high pressure high temperature experiments in multi-anvil assemblies with bixbyite-type In2O3 and synthesis of corundum-type and orthorhombic In2O3 polymorphs. High Pressure Res.2013, 33, 697.10.1080/08957959.2013.834896Search in Google Scholar

[19] R. D. Shannon, New high pressure phases having corundum structure. Solid State Commun.1966, 4, 629.10.1016/0038-1098(66)90058-5Search in Google Scholar

[20] A. Gurlo, D. Dzivenko, P. Kroll, R. Riedel, High-pressure high-temperature synthesis of Rh2O3-II-type In2O3 polymorph. Phys. Status Solidi-R.2008, 2, 269.10.1002/pssr.200802201Search in Google Scholar

[21] A. Gurlo, P. Kroll, R. Riedel, Metastability of corundum-type In2O3. Chem. – Eur. J.2008, 14, 3306.10.1002/chem.200701830Search in Google Scholar PubMed

[22] B. Garcia-Domene, J. A. Sans, O. Gomis, F. J. Manjon, H. M. Ortiz, D. Errandonea, D. Santamaria-Perez, D. Martinez-Garcia, R. Vilaplana, A. L. J. Pereira, A. Morales-Garcia, P. Rodriguez-Hernandez, A. Munoz, C. Popescu, A. Segura, Pbca-Type In2O3: the high-pressure post-corundum phase at room temperature. J. Phys. Chem. C2014, 118, 20545.10.1021/jp5061599Search in Google Scholar

[23] A. Sano-Furukawa, T. Yagi, T. Okada, H. Gotou, T. Kikegawa, Compression behaviors of distorted rutile-type hydrous phases, MOOH (M=Ga, In, Cr) and CrOOD. Phys. Chem. Miner.2012, 39, 375.10.1007/s00269-012-0487-ySearch in Google Scholar

[24] J. Tsuchiya, T. Tsuchiya, A. Sano, E. Ohtani, First principles prediction of new high-pressure phase of InOOH. J. Miner. Petrol. Sci.2008, 103, 116.10.2465/jmps.071022eSearch in Google Scholar

[25] A. Sano, T. Yagi, T. Okada, H. Gotou, E. Ohtani, J. Tsuchiya, T. Kikegawa, X-ray diffraction study of high pressure transition in InOOH. J. Miner. Petrol. Sci.2008, 103, 152.10.2465/jmps.071022mSearch in Google Scholar

[26] L. Schlicker, R. Riedel, A. Gurlo, Indium hydroxide to bixbyite-type indium oxide transition probed in situ by time resolved synchrotron radiation. Nanotechnology2009, 20, 495702.10.1088/0957-4484/20/49/495702Search in Google Scholar PubMed

[27] G. Miehe, S. Lauterbach, H. J. Kleebe, A. Gurlo, Indium hydroxide to oxide decomposition observed in one nanocrystal during in situ transmission electron microscopy studies. J. Solid State Chem.2013, 198, 364.10.1016/j.jssc.2012.09.022Search in Google Scholar

[28] D. B. Yu, D. B. Wang, Y. T. Qian, Synthesis of metastable hexagonal In2O3 nanocrystals by a precursor-dehydration route under ambient pressure. J. Solid State Chem.2004, 177, 1230.10.1016/j.jssc.2003.10.030Search in Google Scholar

[29] A. Oprea, A. Gurlo, N. Barsan, U. Weimar, Transport and gas sensing properties of In2O3 nanocrystalline thick films: a hall effect based approach. Sensor. Actuat. B Chem.2009, 139, 322.10.1016/j.snb.2009.03.002Search in Google Scholar

[30] J. F. Yin, H. Q. Cao, Synthesis and photocatalytic activity of single-crystalline hollow rh-In2O3 nanocrystals. Inorg. Chem.2012, 51, 6529.10.1021/ic300005cSearch in Google Scholar PubMed

[31] E.-M. Köck, M. Kogler, M. Grünbacher, C. Zhuo, R. Thalinger, D. Schmidmair, L. Schlicker, A. Gurlo, S. Penner, Metastable corundum-type In2O3: phase stability, reduction properties, and catalytic characterization. J. Phys. Chem. C2016, 120, 15272.10.1021/acs.jpcc.6b04982Search in Google Scholar

[32] T. J. Yan, X. X. Wang, J. L. Long, H. X. Lin, R. S. Yuan, W. X. Dai, Z. H. Li, X. Z. Fu, Controlled preparation of In2O3, InOOH and In(OH)3 via a one-pot aqueous solvothermal route. New J. Chem.2008, 32, 1843.10.1039/b809313jSearch in Google Scholar

[33] G. Frank, R. Olazcuaga, A. Rabenau, Occurrence of corundum-type indium (III) oxide under ambient conditions. Inorg. Chem.1977, 16, 1251.10.1021/ic50171a060Search in Google Scholar

[34] B.-C. Kim, J.-J. Kim, S.-H. Chang, Synthesis of cubic and rhombohedral phased nanocrystalline SnO2 doped In2O3 [ITO] powders with coprecipitation method. Mat. Res. Soc. Symp. Proc.2000, 581, 27.10.1557/PROC-581-27Search in Google Scholar

[35] D. Chu, Y. P. Zeng, D. Jiang, Z. Ren, Tuning the crystal structure and magnetic properties of Fe doped In2O3 nanocrystals. Appl. Phys. Lett.2007, 91, 262503.10.1063/1.2815661Search in Google Scholar

[36] R. Roy, M. W. Shafer, Phases present and phase equilibrium in the system In2O3-H2O. J. Phys. Chem.1954, 58, 372.10.1021/j150514a019Search in Google Scholar

[37] A. N. Christensen, N. C. Broch, Hydrothermal investigation of systems In2O3-H2O-Na2O and In2O3-D2O-Na2O. Crystal structure of rhombohedral In2O3 and of In(OH)3. Acta Chem. Scand.1967, 21, 1046.10.3891/acta.chem.scand.21-1046Search in Google Scholar

[38] M. S. Lehmann, F. K. Larsen, F. R. Poulsen, A. N. Christensen, S. E. Rasmussen, Neutron and X-ray crystallographic studies on indium oxide hydroxide. Acta Chem. Scand.1970, 24, 1662.10.3891/acta.chem.scand.24-1662Search in Google Scholar

[39] B. N. Litvin, L. I. Ivanova, Possible hydrothermal synthesis of In2O3 crystals. Sov. Phys. Crystallogr.1970, 14, 988.Search in Google Scholar

[40] J. Liebertz, Der Einfluss von Loesungsgenossen auf die Einstellung des Gleichgewichts InOOH/In2O3 unter hydrothermalen Bedingungen. Berich Bunsen Gesell.1966, 70, 1051.Search in Google Scholar

[41] Q. B. Sun, Y. P. Zeng, D. L. Jiang, Preparation and magnetic-optical properties of metastable Ni2+ doped rhombohedral indium oxide nanorods. Crystengcomm. 2012, 14, 713.10.1039/C1CE05543GSearch in Google Scholar

[42] J. Yin, H. Cao, Synthesis and photocatalytic activity of single-crystalline hollow rh-In2O3 Nanocrystals. Inorg. Chem.2012, 51, 6529.10.1021/ic300005cSearch in Google Scholar PubMed

[43] J. Rodriguez-Carvajal, presented in part at the Collected Abstract of Powder Diffraction Meeting, Toulouse, France, 1990.Search in Google Scholar

[44] A. Doran, L. Schlicker, C. Beavers, M. F. Bekheet, A. Gurlo, Compact low power infrared tube furnace for X-ray powder diffraction. Rev. Sci. Instrum.2017, 88, 013903.10.1063/1.4973561Search in Google Scholar PubMed

[45] J. Murto, in The Hydroxyl Group, (Ed. S. Patai) John Wiley & Sons, Ltd., ch. 20, Hydroxide-alkoxide ion equilibria and their influence on chemical reactions, p. 1087, 1971.10.1002/9780470771259.ch20Search in Google Scholar

[46] O. I. Micic, B. Cercek, Diffusion-controlled reactions in mixed-solvents. J. Phys. Chem.1977, 81, 833.10.1021/j100524a006Search in Google Scholar

[47] M. Niederberger, G. Garnweitner, J. Buha, J. Polleux, J. Ba, N. Pinna, Nonaqueous synthesis of metal oxide nanoparticles:Review and indium oxide as case study for the dependence of particle morphology on precursors and solvents. J. Sol-Gel Sci. Techn.2006, 40, 259.10.1007/s10971-006-6668-8Search in Google Scholar

Received: 2016-6-2
Accepted: 2016-8-29
Published Online: 2017-1-28
Published in Print: 2017-2-1

©2017 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 19.3.2024 from https://www.degruyter.com/document/doi/10.1515/zkri-2016-1967/html
Scroll to top button