Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter April 3, 2014

Memory formation and memory alterations: 5-HT6 and 5-HT7 receptors, novel alternative

  • Alfredo Meneses

    Alfredo Meneses received his PhD in Physiological Sciences (1996) from Universidad Nacional Autónoma de Mexico (UNAM). He completed his postdoctoral stay at the NIA, USA from 1997 to 1998. Currently, he is a full Professor at the Department of Pharmacobiology of CINVESTAV. He was invited speaker for the Expert Workshop entitled, ‘Further Understanding of Serotonin 7 Receptors’ Neuropsychopharmacology’ (September 23, 2013, Rome). From 2013 to 2014, he completed two books for Elsevier by invitation, he is an invited editor for the Reviews in the Neuroscience and invited editor for Research Topic as well as associate editor for Frontiers in Pharmacology.

    EMAIL logo

Abstract

Agonists and antagonists of the 5-hydroxytryptamine (serotonin) receptor6 (5-HT6) or receptor7 (5-HT7) might improve memory and/or reverse amnesia, although the mechanisms involved are poorly understood. Hence, the current work summarizes recent reviews and findings involving these receptors. Evidence indicates that diverse 5-HT6 receptor antagonists produce promnesic and/or antiamnesic effect in conditions, such as memory formation, age-related cognitive impairments and memory deficit in preclinical studies, as well as in diseases such as schizophrenia, Parkinson’s, and Alzheimer’s disease (AD). Memory, aging, and AD modify 5-HT6 receptors and signaling cascades; likewise, the modulation of 5-HT6 drugs on memory seems to be accompanied with neural changes. Moreover, 5-HT7 receptors are localized in brain areas mediating memory, including the cortex, hippocampus (e.g., Zola-Morgan and Squire, 1993) and raphe nuclei; however, the role of these receptors on memory has yet to be fully explored. Hence, findings and reviews are summarized in this work. Evidence suggests that both 5-HT7 receptor agonists and antagonists might have promnesic and anti-amnesic effects. These effects seem to be dependent on the basal level of performance, i.e., normal or impaired. Available evidence suggests that a potential utility of 5-HT6 and 5-HT7 receptor in mild-to-moderate AD patients and other memory dysfunctions as therapeutic targets.


Corresponding author: Alfredo Meneses, Department of Pharmacobiology, CINVESTAV, Tenorios 235, Granjas Coapa, Mexico City 14330, Mexico, e-mail:

About the author

Alfredo Meneses

Alfredo Meneses received his PhD in Physiological Sciences (1996) from Universidad Nacional Autónoma de Mexico (UNAM). He completed his postdoctoral stay at the NIA, USA from 1997 to 1998. Currently, he is a full Professor at the Department of Pharmacobiology of CINVESTAV. He was invited speaker for the Expert Workshop entitled, ‘Further Understanding of Serotonin 7 Receptors’ Neuropsychopharmacology’ (September 23, 2013, Rome). From 2013 to 2014, he completed two books for Elsevier by invitation, he is an invited editor for the Reviews in the Neuroscience and invited editor for Research Topic as well as associate editor for Frontiers in Pharmacology.

Acknowledgments

The author would like to thank Sofia Meneses-Goytia for her efforts to improve the language, as well as Roberto Gonzalez for his expert assistance. This work was supported in part supported by CONACYT grant 80060.

Conflict of interests statement

The author declares no conflict of interests.

References

Adamantidis, A. and de Lecea, L. (2009). A role for melanin-concentrating hormone in learning and memory. Peptides 30, 2066–2070.10.1016/j.peptides.2009.06.024Search in Google Scholar

Altman, H.J. and Normile, H.J. (1988). What is the nature of the role of the serotonergic nervous system in learning and memory: prospects for development of an effective treatment strategy for senile dementia. Neurobiol. Aging 9, 627–638.10.1016/S0197-4580(88)80124-6Search in Google Scholar

Aubert, Y., Allers, K.A., Sommer, B., de Kloet, ER., Abbott, D.H., and Datson, N.A. (2013). Brain region-specific transcriptomic markers of serotonin-1A receptor agonist action mediating sexual rejection and aggression in female marmoset monkeys. J. Sex. Med. 10, 1461–1475.10.1111/jsm.12131Search in Google Scholar PubMed

Ballaz, S.J., Akil, H., and Watson, S.J. (2007a). The 5-HT7 receptor: role in novel object discrimination and relation to novelty-seeking behavior. Neuroscience 149, 192–202.10.1016/j.neuroscience.2007.07.043Search in Google Scholar PubMed

Ballaz, S.J., Akil, H., and Watson S.J. (2007b). Analysis of 5-HT6 and 5-HT7 receptor gene expression in rats showing differences in novelty-seeking behavior. Neuroscience 147, 428–438.10.1016/j.neuroscience.2007.04.024Search in Google Scholar PubMed

Barbas, D., DesGroseillers, L., Castellucci, V.F., Carew, T.J., and Marinesco, S. (2003). Multiple serotonergic mechanisms contributing to sensitization in aplysia: evidence of diverse serotonin receptor subtypes. Learn Mem. 10, 373–386.10.1101/lm.66103Search in Google Scholar PubMed PubMed Central

Belcher, A.M., O’Dell, S.J., and Marshall, J.F. (2005). Impaired object recognition memory following methamphetamine, but not p-chloroamphetamine- or d-amphetamine-induced neurotoxicity. Neuropsychopharmacology 30, 2026–2034.10.1038/sj.npp.1300771Search in Google Scholar PubMed

Berger, M., Gray, J.A., and Roth, B.L. (2009). The expanded biology of serotonin. Annu. Rev. Med. 60, 355–366.10.1146/annurev.med.60.042307.110802Search in Google Scholar PubMed PubMed Central

Bockaert, J., Claeysen, S., Bécamel, C., Dumuis, A., and Marin, P. (2006). Neuronal 5-HT metabotropic receptors: fine-tuning of their structure, signaling, and roles in synaptic modulation. Cell Tissue Res. 326, 553–572.10.1007/s00441-006-0286-1Search in Google Scholar PubMed

Bockaert, J., Claeysen, S., Compan, V., and Dumuis, A. (2008). 5-HT4 receptors: history, molecular pharmacology and brain functions. Neuropharmacology 55, 922–931.10.1016/j.neuropharm.2008.05.013Search in Google Scholar PubMed

Bockaert, J., Claeysen, S., Compan, V., and Dumuis, A. (2011). 5-HT4 receptors, a place in the sun: act two. Curr. Opin. Pharmacol. 11, 87–93.10.1016/j.coph.2011.01.012Search in Google Scholar

Bonkale, W.L., Fastbom, J., Wiehager, B., Ravid, R., Winblad, B., and Cowburn, R.F. (1996). Impaired G-protein-stimulated adenylyl cyclase activity in Alzheimer’s disease brain is not accompanied by reduced cyclic-AMP-dependent protein kinase A activity. Brain Res. 737, 155–161.10.1016/0006-8993(96)00724-XSearch in Google Scholar

Bonsi, P., Cuomo, D., Ding, J., Sciamanna, G., Ulrich, S., Tscherter, A., Bernardi, G., Surmeier, D.J., and Pisani, A. (2007). Endogenous serotonin excites striatal cholinergic interneurons via the activation of 5-HT2C, 5-HT6, and 5-HT7 serotonin receptors: implications for extrapyramidal side effects of serotonin reuptake inhibitors. Neuropsychopharmacology 32, 1840–1854.10.1038/sj.npp.1301294Search in Google Scholar PubMed

Borg, J. (2008). Molecular imaging of the 5-HT1A receptor in relation to human cognition. Behav Brain Res. 195, 103–111.10.1016/j.bbr.2008.06.011Search in Google Scholar PubMed

Bosker, F.J., Folgering, J.H., Gladkevich, A.V., Schmidt, A., van der Hart, M.C., Sprouse, J., den Boer, J.A., Westerink, B.H., and Cremers, T.I. (2009). Antagonism of 5-HT(1A) receptors uncovers an excitatory effect of SSRIs on 5-HT neuronal activity, an action probably mediated by 5-HT(7) receptors. J. Neurochem. 108, 1126–1135.10.1111/j.1471-4159.2008.05850.xSearch in Google Scholar PubMed

Boulougouris, V. and Robbins, T.W. (2010). Enhancement of spatial reversal learning by 5-HT2C receptor antagonism is neuroanatomically specific. J. Neurosci. 30, 930–938.10.1523/JNEUROSCI.4312-09.2010Search in Google Scholar PubMed PubMed Central

Bourson, A., Borroni, E., Austin, R.H., Monsma, F.J. Jr., and Sleight, A.J. (1995). Determination of the role of the 5-ht6 receptor in the rat brain: a study using antisense oligonucleotides. J. Pharmacol. Exp. Ther. 274, 173–180.Search in Google Scholar

Branchek, T.A. and Blackburn, T.P. (2000). 5-ht6 receptors as emerging targets for drug discovery. Annu. Rev. Pharmacol. Toxicol. 40, 319–334.10.1146/annurev.pharmtox.40.1.319Search in Google Scholar PubMed

Briand, L.A., Gritton, H., Howe, W.M., Young, D.A., and Sarter, M. (2007). Modulators in concert for cognition: modulator interactions in the prefrontal cortex. Prog. Neurobiol. 83, 69–91.10.1016/j.pneurobio.2007.06.007Search in Google Scholar PubMed PubMed Central

Buchhave, P., Minthon, L., Zetterberg, H., Wallin, A.K., Blennow, K., and Hansson, O. (2012). Cerebrospinal fluid levels of β-amyloid 1–42, but not of tau, are fully changed already 5 to 10 years before the onset of Alzheimer dementia. Arch Gen. Psychiatry 69, 98–106.10.1001/archgenpsychiatry.2011.155Search in Google Scholar PubMed

Buhot, M.C., Wolff, M., and Segu, L. (2003). Serotonin. Memories are Made of These: From Messengers to Molecules. Gernot Riedel and Bettina Platt., eds. Amsterdam: Eurekah.com and Kluwer Academic/Plenum Publishers, pp. 1–19.Search in Google Scholar

Burnham, K.E., Baxter, M.G., Dawson, L.A., Southam, E., Sharp, T., and Bannerman, D.M. (2007). Effect of the 5-HT6 receptor agonist WAY181187 on prefrontal cortical function in the rat. Neurosci. Abstract 741, 28.AAA1.Search in Google Scholar

Burnham, K.E., Baxter, M.G., Bainton, J.R., Southam, E., Dawson, L.A., Bannerman, D.M., and Sharp, T. (2010). Activation of 5-HT6 receptors facilitates attentional set shifting. Psychopharmacol (Berl.) 208, 13–21.10.1007/s00213-009-1701-6Search in Google Scholar PubMed

Bussey, T.J., Holmes, A., Lyon, L., Mar, A.C., McAllister, K.A., Nithianantharajah, J., Oomen, C.A., and Saksida, L.M. (2012). New translational assays for preclinical modelling of cognition in schizophrenia: the touchscreen testing method for mice and rats. Neuropharmacology 62, 1191–1203.10.1016/j.neuropharm.2011.04.011Search in Google Scholar

Cadogan, A.K., Kendall, D.A., and Marsden, C.A. (1994). Serotonin 5-HT1A receptor activation increases cyclic AMP formation in the rat hippocampus in vivo. J. Neurochem. 62, 1816–1821.10.1046/j.1471-4159.1994.62051816.xSearch in Google Scholar

Calcagno, E., Carli, M., and Invernizzi, R.W. (2006). The 5-HT1A receptor agonist 8-OH-DPAT prevents prefrontocortical glutamate and serotonin release in response to blockade of cortical NMDA receptors. J. Neurochem. 96, 853–860.10.1111/j.1471-4159.2005.03600.xSearch in Google Scholar

Callaghan, C.K., Hok, V., Della-Chiesa, A., Virley, D.J., Upton, N., and O’Mara, S.M. (2012). Age-related declines in delayed non-match-to-sample performance (DNMS) are reversed by the novel 5HT6 receptor antagonist SB742457. Neuropharmacol. 63, 890–897.10.1016/j.neuropharm.2012.06.034Search in Google Scholar

Callaghan, B.L., Li, S., and Richardson, R. (2014). The elusive engram: what can infantile amnesia tell us about memory? Trends Neurosci. 37, 47–53.Search in Google Scholar

Cammarota, M., Bevilaqua, L.R., Medina, J.H., and Izquierdo, I. (2008). ERK1/2 and CaMKII-mediated events in memory formation: is 5HT regulation involved? Behav. Brain Res. 195, 120–128.10.1016/j.bbr.2007.11.029Search in Google Scholar

Cassel, J.C. (2010). Experimental studies on the role(s) of serotonin in learning and memory functions. Handbook of the Behavioral Neurobiology of Serotonin. C.P. Müller and B.L. Jacobs, eds. Vol. 21. (Amsterdam: Academic Press), pp. 429–447.10.1016/S1569-7339(10)70094-1Search in Google Scholar

Chang, S.D., and Liang, K.C. (2012). Roles of hippocampal GABAA and muscarinic receptors in consolidation of context memory and context-shock association in contextual fear conditioning: a double dissociation study. Neurobiol. Learn Mem. 98, 17–24.10.1016/j.nlm.2012.04.004Search in Google Scholar PubMed

Charnay, Y., and Léger, L. (2010). Brain serotonergic circuitries. Dialogues Clin. Neurosci. 12, 471–487.10.31887/DCNS.2010.12.4/ycharnaySearch in Google Scholar

Choi, Y.H., Kang, H., Lee, W.K., Kim, T., Rhim, H., and Yu, Y.G. (2007). An inhibitory compound against the interaction between G alpha(s) and the third intracellular loop region of serotonin receptor subtype 6 (5-HT6) disrupts the signaling pathway of 5-HT6. Exp. Mol. Med. 39, 335–342.10.1038/emm.2007.37Search in Google Scholar PubMed

Chou, Y.H., Wang, S.J., Lirng, J.F., Lin, C.L., Yang, K.C., Chen, C.K., Yeh, C.B., and Liao, M.H. (2012). Impaired cognition in bipolar I disorder: the roles of the serotonin transporter and brain-derived neurotrophic factor. J. Affect. Disord. 143, 131–137.10.1016/j.jad.2012.05.043Search in Google Scholar PubMed

Cifariello, A., Pompili, A., and Gasbarri, A. (2008). 5-HT7 receptors in the modulation of cognitive processes. Behav. Brain Res. 195 171–179.10.1016/j.bbr.2007.12.012Search in Google Scholar PubMed

Ciranna, L. (2006). Serotonin as a modulator of glutamate- and GABA-mediated neurotransmission: implications in physiological functions and in pathology. Curr. Neuropharmacol. 4, 101–114.10.2174/157015906776359540Search in Google Scholar PubMed PubMed Central

Clifford R.J., Holtzman, D.M. (2013). Biomarker modeling of Alzheimer’s Disease. Neuron. 80, 1347–1358.10.1016/j.neuron.2013.12.003Search in Google Scholar PubMed PubMed Central

Cochet, M., Donneger, R., Cassier, E., Gaven, F., Lichtenthaler, S.F., Marin, P., Bockaert, J., and Claeysen, S. (2013). 5HT4 receptors constitutively promote the non-Amyloidogenic pathway of APP cleavage and interact with ADAM10. ACS Chemical Neurosci. 4, 130−140.10.1021/cn300095tSearch in Google Scholar PubMed PubMed Central

Codony, X., Burgueño, J., Ramírez, M.J., and Vela, J.M. (2010). 5-HT6 receptor signal transduction second messenger systems. Int. Rev. Neurobiol. 94, 89–110.10.1016/B978-0-12-384976-2.00004-6Search in Google Scholar PubMed

Codony, X., Vela, J.M., and Ramírez, M.J. (2011). 5-HT6 receptor and cognition. Curr. Opin. Pharmacol. 11, 94–100.10.1016/j.coph.2011.01.004Search in Google Scholar PubMed

Cook, R.G., Geller, A.I., Zhang, G.R., and Gowda, R. (2004). Touchscreen-enhanced visual learning in rats. Behav. Res. Met. Instrum. Comput. 36, 101–106.10.3758/BF03195555Search in Google Scholar

Costa, L., Spatuzza, M., D’Antoni, S., Bonaccorso, C.M., Trovato, C., Musumeci, S.A., Leopoldo, M., Lacivita, E., Catania, M.V., and Ciranna, L. (2012). Activation of 5-HT7 serotonin receptors reverses metabotropic glutamate receptor-mediated synaptic plasticity in wild-type and Fmr1 knockout mice, a model of Fragile X syndrome. Biol. Psychiatry 72, 924–933.10.1016/j.biopsych.2012.06.008Search in Google Scholar PubMed

Da Silva Costa-Aze, V., Dauphin, F., and Boulouard, M. (2011). Serotonin 5-HT6 receptor blockade reverses the age-related deficits of recognition memory and working memory in mice. Behav. Brain Res. 222, 134–140.10.1016/j.bbr.2011.03.046Search in Google Scholar PubMed

Da Silva Costa-Aze, V., Quiedeville, A., Boulouard, M., and Dauphin F. (2012). 5-HT6 receptor blockade differentially affects scopolamine-induced deficits of working memory, recognition memory and aversive learning in mice. Psychopharmacology (Berl.) 222, 99–115.10.1007/s00213-011-2627-3Search in Google Scholar PubMed

Davis, H.P. and Squire, L. (1984). The pharmacology of memory: a review. Psychol. Bull. 96, 518–559.10.1037/0033-2909.96.3.518Search in Google Scholar

Dawson, L.A. (2011). The central role of 5-HT6 receptors in modulating brain neurochemistry. Int. Rev. Neurobiol. 96, 1–26.10.1016/B978-0-12-385902-0.00001-2Search in Google Scholar

Dawson, L.A., Nguyen, H.Q., and Li, P. (2001). The 5-HT6 receptor antagonist SB-271046 selectively enhances excitatory neurotransmission in the rat frontal cortex and hippocampus. Neuropsychopharmacology 25, 662–668.10.1016/S0893-133X(01)00265-2Search in Google Scholar

Dayan, P. and Huys, Q.J. (2009). Serotonin in affective control. Ann. Rev. Neurosci. 32, 95–126.10.1146/annurev.neuro.051508.135607Search in Google Scholar PubMed

de Foubert, G., O’Neill, M.J., and Zetterström, T.S. (2007). Acute onset by 5-HT6-receptor activation on rat brain brain-derived neurotrophic factor and activity-regulated cytoskeletal-associated protein mRNA expression. Neurosci. 147, 778–785.10.1016/j.neuroscience.2007.04.045Search in Google Scholar PubMed

Dijk, S.N., Francis, P.T., Stratmann, G.C., and Bowen, D.M. (1995). NMDA-induced glutamate and aspartate release from rat cortical pyramidal neurones: evidence for modulation by a 5-HT1A antagonist. Br. J. Pharmacol. 115, 1169–1174.10.1111/j.1476-5381.1995.tb15020.xSearch in Google Scholar PubMed PubMed Central

Drago, A., Alboni, S., Brunello, N., De Ronchi, D., and Serretti, A. (2010). HTR1B as a risk profile maker in psychiatric disorders: a review through motivation and memory. Eur. J. Clin. Pharmacol. 66, 5–27. doi: 10.1007/s00228-009-0724-6. Epub 2009 Oct 7. Review. Erratum in: Eur. J. Clin. Pharmacol. 66:105.Search in Google Scholar

Eichenbaum, H. (2013). What H.M. taught us. J. Cogn. Neurosci. 25, 14–21.10.1162/jocn_a_00285Search in Google Scholar PubMed

Elvander-Tottie, E., Eriksson, T.M., Sandin J., and Ogren, S.O. (2009). 5-HT1A and NMDA receptors interact in the rat medial septum and modulate hippocampal-dependent spatial learning. Hippocampus 19, 1187–1198.10.1002/hipo.20596Search in Google Scholar PubMed

Engelborghs, S., Sleegers, K., Van der Mussele, S., Le Bastard, N., Brouwers, N., Van Broeckhoven, C., and De Deyn, P.P. (2013). Brain-specific tryptophan hydroxylase, TPH2, and 5-HTTLPR are associated with frontal lobe symptoms in Alzheimer’s disease. J. Alzheimers Dis. 35, 67–73.10.3233/JAD-101305Search in Google Scholar PubMed

Eppinger, B., Hämmerer, D., and Li, S.C. (2012). Neuromodulation of reward-based learning and decision making in human aging. Ann. NY Acad. Sci. 1235, 1–17.10.1111/j.1749-6632.2011.06230.xSearch in Google Scholar PubMed PubMed Central

Eriksson, T.M., Holst, S., Stan, T.L., Hager, T., Sjögren, B., Ogren, S.O., Svenningsson, P., and Stiedl, O. (2012). 5-HT1A and 5-HT7 receptor crosstalk in the regulation of emotional memory: implications for effects of selective serotonin reuptake inhibitors. Neuropharmacology 63, 1150–1160.10.1016/j.neuropharm.2012.06.061Search in Google Scholar PubMed

Fink, K.B. and Göthert, M. (2007). 5-HT receptor regulation of neurotransmitter release. Pharmacol. Rev. 59, 360–417.10.1124/pr.59.07103Search in Google Scholar

Fischer, A., Sananbenesi, F., Spiess, J., and Radulovic, J. (2003). Cdk5: a novel role in learning and memory. Neurosignals 12, 200–208.10.1159/000074621Search in Google Scholar PubMed

Fishell, G. and Heintz, N. (2013). The neuron identity problem, form meets function. Neuron 80, 602–612.10.1016/j.neuron.2013.10.035Search in Google Scholar PubMed

Fitzpatrick, C.J., Gopalakrishnan, S., Cogan, E.S., Yager, L.M., Meyer, P.J., Lovic., V., Saunders, B.T., Parker, C.C., Gonzales, N.M., Aryee, E., et al. (2013). Variation in the form of pavlovian conditioned approach behavior among outbred male sprague-dawley rats from different vendors and colonies: sign-tracking vs. goal-tracking. PLoS One 8, e75042.10.1371/journal.pone.0075042Search in Google Scholar PubMed PubMed Central

Flagel, S.B., Waselus, M., Clinton, S.M., Watson, S.J., and Akil, H. (2014). Antecedents and consequences of drug abuse in rats selectively bred for high and low response to novelty. Neuropharmacology 76, Part B, 425–436.10.1016/j.neuropharm.2013.04.033Search in Google Scholar PubMed PubMed Central

Foley, A.G., Murphy, K.J., Hirst, W.D., Gallagher, H.C., Hagan, J.J., Upton, N., Walsh, F.S., and Regan, C.M. (2004). The 5-HT6 receptor antagonist SB-271046 reverses scopolamine-disrupted consolidation of an inhibitory avoidance task and ameliorates spatial task deficits in aged rats. Neuropsychopharmacology 29, 93–100.10.1038/sj.npp.1300332Search in Google Scholar PubMed

Fone, K.C. (2006). Selective 5-HT6 compounds as a novel approach to the treatment of Alzheimer disease. J. Pharmacol. Sci. 101(Suppl 1), 53.Search in Google Scholar

Fone, K.C. (2008). An update on the role of the 5-hydroxytryptamine6 receptor in cognitive function. Neuropharmacology 55, 1015–1022.10.1016/j.neuropharm.2008.06.061Search in Google Scholar PubMed

Fone, K.C.F., Watson, D.J.G., Khan, A., Marin, P., Bockaert, J., and Millan M. (2012). Functional role of 5HT6 receptor in the neuro-developmental cognitive deficits seen in schizophrenia. Serotonin Club meeting, Abstract pp, 59. July 10–12, 2012, Montpellier, France.Search in Google Scholar

Fournet, V., de Lavilléon, G., Schweitzer, A., Giros, B., Andrieux, A., and Martres, M.P. (2012). Both chronic treatments by epothilone D and fluoxetine increase the short-term memory and differentially alter the mood-status of STOP/MAP6 KO mice. J. Neurochem. 123, 982–96.10.1111/jnc.12027Search in Google Scholar PubMed

Frankland, P., Köhler, S., and Josselyn, S.A. (2013). Hippocampal neurogenesis and forgetting. Trends Neurosci. 36, 497–503.10.1016/j.tins.2013.05.002Search in Google Scholar PubMed

Freret, T., Paizanis, E., Beaudet, G., Gusmao-Montaigne, A., Nee, G., Dauphin, F., Bouet, V., and Boulouard, M. (2014). Modulation of 5-HT7 receptor, effect on object recognition performances in mice. Psychopharmacology (Berl.) 231, 393–400.10.1007/s00213-013-3247-xSearch in Google Scholar

Freunberger, R., Werkle-Bergner, M., Griesmayr, B., Lindenberger, U., and Klimesch, W. (2011). Brain oscillatory correlates of working memory constraints. Brain Res. 1375, 93–102.10.1016/j.brainres.2010.12.048Search in Google Scholar

Gacsályi, I., Nagy, K., Pallagi, K., Lévay, G., Hársing, L.G Jr., Móricz, K., Kertész, S., Varga, P., Haller, J., Gigler, G., et al. (2013). Egis-11150: a candidate antipsychotic compound with procognitive efficacy in rodents. Neuropharmacology 64, 254–263.10.1016/j.neuropharm.2012.07.017Search in Google Scholar

Garcia-Alloza, M., Hirst, W.D., Chen, C.P., Lasheras, B., Francis, P.T. and Ramírez, M.J. (2004). Differential involvement of 5-HT1B/1D and 5-HT6 receptors in cognitive and non-cognitive symptoms in Alzheimer’s disease. Neuropsychopharmacol. 29, 410–416.10.1038/sj.npp.1300330Search in Google Scholar

Geldenhuys, W.J. and Van der Schyf, C.J. (2008). 5-HT6 receptor antagonists for the treatment of Alzheimer’s disease. Curr. Top Med. Chem. 8, 1035–1048.10.2174/156802608785161420Search in Google Scholar

Geldenhuys, W.J. and Van der Schyf, C.J. (2009). The serotonin 5-HT6 receptor, a viable drug target for treating cognitive deficits in Alzheimer’s disease. Expert Rev. Neurother. 9, 1073–1085.10.1586/ern.09.51Search in Google Scholar

Geldenhuys, W.J. and Van der Schyf, C.J. (2011). Role of serotonin in Alzheimer’s disease, a new therapeutic target? CNS Drugs 25, 765–781.10.2165/11590190-000000000-00000Search in Google Scholar

Gellynck, E., Heyninck, K., Andressen, K.W., Haegeman, G., Levy, F.O., Vanhoenacker, P., and Van Craenenbroeck, K. (2013). The serotonin 5-HT7 receptors: two decades of research. Exp. Brain Res. 230, 555–568.10.1007/s00221-013-3694-ySearch in Google Scholar

Gérard, C., El Mestikawy, S., Lebrand, C., Adrien, J., Ruat, M., Traiffort, E., Hamon, M., and Martres, M.P. (1996). Quantitative RT-PCR distribution of serotonin 5-HT6 receptor mRNA in the central nervous system of control or 5,7-dihydroxitriptamine-treated rats. Synapse 23, 164–173.10.1002/(SICI)1098-2396(199607)23:3<164::AID-SYN5>3.0.CO;2-6Search in Google Scholar

Gérard, C., Martres, M.P., Lefevre, K., Miquel, M.C., Verge, D., Lanfumey, L., Doucet, E., Hamon, M., and El Mestikawy, S. (1997). Inmuno-localization of serotonin 5-HT6 receptor-like material in the rat central nervous system. Brain Res. 746, 207–19.10.1016/S0006-8993(96)01224-3Search in Google Scholar

Goghari, V.M., Smith, G.N., Honer, W.G., Kopala, L.C., Thornton, A.E., Su, W., Macewan, G.W., and Lang, D.J. (2013). Effects of eight weeks of atypical antipsychotic treatment on middle frontal thickness in drug-naïve first-episode psychosis patients. Schizophr Res. 149, 149–155.10.1016/j.schres.2013.06.025Search in Google Scholar PubMed

Gong, P., Zheng, Z., Chi, W., Lei, X., Wu, X., Chen, D., Zhang, K., Zheng, A., Gao, X., and Zhang, F. (2012). An association study of the genetic polymorphisms in 13 neural plasticity-related genes with semantic and episodic memories. J. Mol. Neurosci. 46, 352–361.10.1007/s12031-011-9592-5Search in Google Scholar PubMed

Gonzalez, R., Chávez-Pascacio, K., and Meneses, A. (2013). Role of 5-HT5A receptors in the consolidation of memory. Behav. Brain Res. 252, 246–251.10.1016/j.bbr.2013.05.051Search in Google Scholar PubMed

Grandoch, M., Roscioni, S.S., and Schmidt, M. (2010). The role of Epac proteins, novel cAMP mediators, in the regulation of immune, lung and neuronal function. Br. J. Pharmacol. 159, 265–284.10.1111/j.1476-5381.2009.00458.xSearch in Google Scholar PubMed PubMed Central

Gravius, A., Laszy, J., Pietraszek, M., Sághy, K., Nagel, J., Chambon, C., Wegener, N., Valastro, B., Danysz, W., and Gyertyán, I. (2011). Effects of 5-HT6 antagonists, Ro-4368554 and SB-258585, in tests used for the detection of cognitive enhancement and antipsychotic-like activity. Behav. Pharmacol. 22, 122–135.10.1097/FBP.0b013e328343d804Search in Google Scholar PubMed

Haahr, M.E., Fisher, P., Holst, K., Madsen, K., Jensen, C.G., Marner, L., Lehel, S., Baaré, W., Knudsen, G., and Hasselbalch, S. (2012). The 5-HT4 receptor levels in hippocampus correlates inversely with memory test performance in humans. Hum. Brain Mapp. doi: 10.1002/hbm.22123. [Epub ahead of print].10.1002/hbm.22123Search in Google Scholar PubMed PubMed Central

Haider, S., Khaliq, S., Tabassum, S., and Haleem, D.J. (2012). Role of somatodendritic and postsynaptic 5-HT1A receptors on learning and memory functions in rats. Neurochem. Res. 37, 2161–2166.10.1007/s11064-012-0839-5Search in Google Scholar PubMed

Hajjo, R., Setola, V., Roth, B.L., and Tropsha, A. (2012). Chemocentric informatics approach to drug discovery: identification and experimental validation of selective estrogen receptor modulators as ligands of 5-hydroxytryptamine-6 receptors and as potential cognition enhancers. J. Med. Chem. 55, 5704–5719.10.1021/jm2011657Search in Google Scholar PubMed PubMed Central

Hannon, J. and Hoyer, D. (2008). Molecular biology of 5-HT receptors. Behav. Brain Res. 195, 198–213.10.1016/j.bbr.2008.03.020Search in Google Scholar PubMed

Harsing, L.G. Jr. (2006). The pharmacology of the neurochemical transmission in the midbrain raphe nuclei of the rat. Curr. Neuropharmacol 4, 313–339.10.2174/157015906778520764Search in Google Scholar PubMed PubMed Central

Hatcher, P.D., Brown, V.J., Tait, D.S., Bate, S., Overend, P., Hagan, J.J., and Jones, D.N. (2005). 5-HT6 receptor antagonists improve performance in an attentional set shifting task in rats. Psychopharmacology (Berl.) 181, 253–259.10.1007/s00213-005-2261-zSearch in Google Scholar

Healy, D.J. and Meador-Woodruff, J.H. (1999). Ionotropic glutamate receptor modulation of 5-HT6 and 5-HT7 mRNA expression in rat brain. Neuropsychopharmacology 21, 341–351.10.1016/S0893-133X(99)00043-3Search in Google Scholar

Hedlund, P.B., Leopoldo, M., Caccia, S., Sarkisyan, G., Fracasso, C., Martelli, G., Lacivita, E., Berardi, F. and Perrone, R. (2010). LP-211 is a brain penetrant selective agonist for the serotonin 5-HT7 receptor. Neurosci Lett. 481, 12–16.10.1016/j.neulet.2010.06.036Search in Google Scholar PubMed PubMed Central

Hermann, A., Küpper, Y., Schmitz, A., Walter, B., Vaitl, D., Hennig, J., Stark, R. and Tabbert, K. (2012). Functional gene polymorphisms in the serotonin system and traumatic life events modulate the neural basis of fear acquisition and extinction. PLoS One 7, e44352. Epub Sep 5. PMID: 22957066.Search in Google Scholar

Herrick-Davis, K. (2013). Functional significance of serotonin receptor dimerization. Exp. Brain Res. 230, 375–386.10.1007/s00221-013-3622-1Search in Google Scholar PubMed PubMed Central

Hill, R.A., Murray, S.S., Halley, P.G., Binder, M.D., Martin, S.J., and van den Buuse, M. (2011). Brain-derived neurotrophic factor expression is increased in the hippocampus of 5-HT(2C) receptor knockout mice. Hippocampus 21, 434–445.10.1002/hipo.20759Search in Google Scholar PubMed

Hindi Attar, C., Finckh, B. and Büchel, C. (2012). The influence of serotonin on fear learning. PLoS One 7, e42397.Search in Google Scholar

Hirano, K., Piers, T.M., Searle, K.L., Miller, N.D., Rutter, A.R., and Chapman, P.F. (2009). Procognitive 5-HT6 antagonists in the rat forced swimming test: potential therapeutic utility in mood disorders associated with Alzheimer’s disease. Life Sci. 84, 558–562.10.1016/j.lfs.2009.01.019Search in Google Scholar PubMed

Hirst, W.D., Abrahamsen, B., Blaney, F.E., Calver, A.R., Aloj, L., Price, G.W., and Medhurst, A.D. (2003). Differences in the central nervous system distribution and pharmacology of the mouse 5-hydroxytryptamine-6 receptor compared with rat and human receptors investigated by radioligand binding, site-directed mutagenesis, and molecular modeling. Mol. Pharmacol. 64, 1295–1308.10.1124/mol.64.6.1295Search in Google Scholar PubMed

Hirst, W.D., Stean, T.O., Rogers, D.C., Sunter, D., Pugh, P., Moss, S.F., Bromidge, S.M., Riley, G., Smith, D.R., Bartlett, S., et al. (2006). SB-399885 is a potent, selective 5-HT6 receptor antagonist with cognitive enhancing properties in aged rat water maze and novel object recognition models. Eur. J. Pharmacol. 553, 109–119.10.1016/j.ejphar.2006.09.049Search in Google Scholar PubMed

Hodges, H., Sowinski, P., Turner, J.J., and Fletcher, A. (1996). Comparison of the effects of the 5-HT3 receptor antagonists WAY-100579 and ondansetron on spatial learning in the water maze in rats with excitotoxic lesions of the forebrain cholinergic projection system. Psychopharmacology (Berl.) 125, 146–161.10.1007/BF02249414Search in Google Scholar PubMed

Hoeffer, C.A. and Klann, E. (2010). mTOR signaling: at the crossroads of plasticity, memory and disease. Trends Neurosci. 33, 67–75.10.1016/j.tins.2009.11.003Search in Google Scholar PubMed PubMed Central

Holenz, J., Pauwels, P.J., Díaz, J.L., Mercè, R., Codony, X., and Buschmann, H. (2006). Medicinal chemistry strategies to 5-HT6 receptor ligands as potential cognitive enhancers and antiobesity agents. Drug Discov. Today. 11, 283–299.10.1016/j.drudis.2006.02.004Search in Google Scholar

Hong, E. and Meneses, A. (1996). Systemic injection of p-chloroamphetamine eliminates the effect of the 5-HT3 compounds on learning. Pharmacol. Biochem. Behav. 53, 765–769.10.1016/0091-3057(95)02104-3Search in Google Scholar

Hong, E., Orozco, G., Meneses, A., and Fillion, G. (1999). Effect of 5-HT-moduline, an endogenous peptide, in associative learning. Proc. West Pharmacol. Soc. 42, 37–38.Search in Google Scholar

Hölscher, C. (1997). Long-term potentiation: a good model for learning and memory? Prog. Neuropsychopharmacol. Biol. Psychiatry 21, 47–68.Search in Google Scholar

Horiguchi, M., Huang, M., and Meltzer, H.Y. (2011). The role of 5-hydroxytryptamine 7 receptors in the phencyclidine-induced novel object recognition deficit in rats. J. Pharmacol. Exp. Ther. 338, 605–614.10.1124/jpet.111.180638Search in Google Scholar

Horiguchi, M., Hannaway, K.E., Adelekun, A.E., Huang, M., Jayathilake, K., and Meltzer, H.Y. (2013). D(1) receptor agonists reverse the subchronic phencyclidine (PCP)-induced novel object recognition (NOR) deficit in female rats. Behav. Brain Res. 238, 36–43.10.1016/j.bbr.2012.09.030Search in Google Scholar

Horisawa, T., Nishikawa, H., Toma, S., Ikeda, A., Horiguchi, M., Ono, M., Ishiyama, T., and Taiji, M. (2013). The role of 5-HT7 receptor antagonism in the amelioration of MK-801-induced learning and memory deficits by the novel atypical antipsychotic drug lurasidone. Behav. Brain Res. 244, 66–69.10.1016/j.bbr.2013.01.026Search in Google Scholar

Hotte, M., Dauphin, F., Freret, T., Boulouard, M., and Levallet, G. (2012). A biphasic and brain-region selective down-regulation of cyclic adenosine monophosphate concentrations supports object recognition in the rat. PLoS One 7,e32244.10.1371/journal.pone.0032244Search in Google Scholar

Hoyer, D., Clarke, D.E., Fozard, J.R., Hartig, P.R., Martin, G.R., Mylecharane, E.J., Saxena, P.R., and Humphrey, P.P. (1994). International Union of Pharmacology classification of receptors for 5-hydroxytryptamine (Serotonin). Pharmacol Rev. 46, 157–203.Search in Google Scholar

Hoyer, D., Hannon, J.P., and Martin, G.R. (2002). Molecular, pharmacological and functional diversity of 5-HT receptors. Pharmacol. Biochem. Behav. 7, 533–554.10.1016/S0091-3057(01)00746-8Search in Google Scholar

Huang, M., Panos, J.J., Kwon, S., Oyamada, Y., Rajagopal, L., and Meltzer, H.Y. (2014). Comparative effect of lurasidone and blonanserin on cortical glutamate, dopamine, and acetylcholine efflux: role of relative serotonin (5-HT)2A and DA D2 antagonism and 5-HT1A partial agonism. J. Neurochem. 128, 938–949.10.1111/jnc.12512Search in Google Scholar PubMed

Huerta-Rivas, A., González-Espinosa, C., Pérez-García., G., and Meneses, A. (2007). 5-HT6 receptor mRNA role during memory formation. Society for Neuroscience Meeting. Abstract No. 743.3/AAA26. San Diego, CA. November 3–7.Search in Google Scholar

Huerta-Rivas, A., Perez-Garcia, G., Gonzalez, C., and Meneses, A. (2010). Time-course of 5-HT6 receptor mRNA expression during memory consolidation and amnesia. Neurobiol. Learn Mem. 93, 99–110.10.1016/j.nlm.2009.08.009Search in Google Scholar PubMed

Iadecola, C. (2004). Neurovascular regulation in the normal brain and in Alzheimer’s disease. Nat. Rev. Neurosci. 5,347–360.10.1038/nrn1387Search in Google Scholar PubMed

Ishibashi, T., Horisawa, T., Tokuda, K., Ishiyama, T., Ogasa, M., Tagashira, R., Matsumoto, K., Nishikawa, H., Ueda, Y., Toma, S., et al. (2010). Pharmacological profile of lurasidone, a novel antipsychotic agent with potent 5-hydroxytryptamine 7 (5-HT7) and 5-HT1A receptor activity. J. Pharmacol. Exp. Ther. 334, 171–181.10.1124/jpet.110.167346Search in Google Scholar

Ivachtchenko, A.V. and Ivanenkov, Y.A. (2012). 5HT6 receptor antagonists: a patent update. Part 1. Sulfonyl derivatives. Expert Opin. Ther. Pat. 22, 917–964.10.1517/13543776.2012.709236Search in Google Scholar

Ivachtchenko, A.V., Ivanenkov, Y.A., and Skorenko, A.V. (2012). 5-HT6 receptor modulators: a patent update. Part 2. Diversity in heterocyclic scaffolds. Expert Opin. Ther. Pat. 22, 1123–1168.10.1517/13543776.2012.722205Search in Google Scholar

Izquierdo, I. (1989). Mechanism of action of scopolamine as an amnesic. Trends Pharmacol. Sci. 10, 175–177.10.1016/0165-6147(89)90231-9Search in Google Scholar

Izquierdo, I., Medina, J.H., Viana, M.R.M., Izquierdo, L.A., and Izquierdo, I. (1999). Separate mechanisms of short- and long-term memory. Behav. Brain Res. 103, 1–11.10.1016/S0166-4328(99)00036-4Search in Google Scholar

Izquierdo, I. and McGaugh, J.L. (2000). Behavioural pharmacology and its contribution to the molecular basis of memory consolidation. Behav. Pharmacol. 11, 517–534.10.1097/00008877-200011000-00001Search in Google Scholar PubMed

Izquierdo, I., Bevilaqua, L.R., Rossato, J.I., Bonini, J.S., Da Silva, W.C., Medina, J.H., and Cammarota, M. (2006a). The connection between the hippocampal and the striatal memory systems of the brain: a review of recent findings. Neurotox. Res. 10, 113–121.10.1007/BF03033240Search in Google Scholar PubMed

Izquierdo, I., Bevilaqua, L.R., Rossato, J.I., Bonini, J.S., Medina, J.H., and Cammarota M. (2006b). Different molecular cascades in different sites of the brain control memory consolidation. Trends Neurosci. 29, 496–505.10.1016/j.tins.2006.07.005Search in Google Scholar PubMed

Jacobs, B.L. and Azmitia, E.C. (1992). Structure and function of the brain serotonin system. Physiol. Rev. 72, 165–229.10.1152/physrev.1992.72.1.165Search in Google Scholar PubMed

Johnson, C.N., Ahmed, M., and Miller, N.D. (2008). 5-HT6 receptor antagonists: prospects for the treatment of cognitive disorders including dementia. Curr. Opin. Drug Discov. Devel. 11, 642–654.Search in Google Scholar

Jones, T. and Moller, M.D. (2011). Implications of hypothalamic-pituitary-adrenal axis functioning in posttraumatic stress disorder. J. Am. Psychiatr. Nurses. Assoc. 17, 393–403.10.1177/1078390311420564Search in Google Scholar PubMed

Kandel, E.R. (2001). The molecular biology of memory storage: a dialogue between genes and synapses. Sci. 294, 1030–1038.10.1126/science.1067020Search in Google Scholar

Kandel, E.R. (2012). The molecular biology of memory: cAMP, PKA, CRE, CREB-1, CREB-2, and CPEB. Mol Brain. 5, 14.10.1186/1756-6606-5-14Search in Google Scholar

Kakade, S. and Dayan, P. (2002). Acquisition and extinction in autoshaping. Psychol. Rev. 109, 533–544.10.1037/0033-295X.109.3.533Search in Google Scholar

Kalueff, A.V., Olivier, J.D., Nonkes, L.J., and Homberg, J.R. (2010). Conserved role for the serotonin transporter gene in rat and mouse neurobehavioral endophenotypes. Neurosci. Biobehav. Rev. 34, 373–386.10.1016/j.neubiorev.2009.08.003Search in Google Scholar

Karabeg, M.M., Grauthoff, S., Kollert, S.Y., Weidner, M., Heiming, R.S., Jansen, F., Popp, S., Kaiser, S., Lesch, K.P., Sachser, N., et al. (2013). 5-HTT Deficiency affects neuroplasticity and increases stress sensitivity resulting in altered spatial learning performance in the morris water maze but not in the barnes maze. Plos One 8, 1–19.10.1371/journal.pone.0078238Search in Google Scholar

Kendall, I., Slotten, H.A., Codony, X., Burgueño, J., Pauwels, P.J., Vela, J.M., and Fone, K.C. (2011). E-6801, a 5-HT6 receptor agonist, improves recognition memory by combined modulation of cholinergic and glutamatergic neurotransmission in the rat. Psychopharmacology (Berl.) 213, 413–430.10.1007/s00213-010-1854-3Search in Google Scholar

Kikuchi, C., Suzuki, H., Hiranuma, T., and Koyama, M. (2003). New tetrahydrobenzindoles as potent and selective 5-HT7 antagonists with increased in vitro metabolic stability. Bioorg. Med. Chem. Lett. 13, 61–64.10.1016/S0960-894X(02)00842-9Search in Google Scholar

King, M.V., Sleight, A.J., Woolley, M.L., Topsham, I.A., Marsden, D.A., and Fone K.C. (2004). 5-HT6 receptors antagonists reverse delay-dependent deficits in novel object discrimination by enhancing consolidation – an effect sensitive to NMDA receptor antagonism. Neuropharmacology 47, 195–204.10.1016/j.neuropharm.2004.03.012Search in Google Scholar PubMed

King, M.V., Marsden, C.A., and Fone, K.C. (2008). A role for the 5-HT1A, 5-HT4 and 5-HT6 receptors in learning and memory. Trends Pharmacol. Sci. 29, 482–492.10.1016/j.tips.2008.07.001Search in Google Scholar PubMed

King, M.V., Spicer, C.H., Sleight, A.J., Marsden, C.A., and Fone, K.C. (2009). Impact of regional 5-HT depletion on the cognitive enhancing effects of a typical 5-ht6 receptor antagonist, Ro 04-6790, in the Novel Object Discrimination task. Psychopharmacol (Berl.) 202, 111–123.10.1007/s00213-008-1334-1Search in Google Scholar PubMed

King, M., Negm, O., Tighe, P., Knapp, S., Wigmore, P., and Fone, K.C. (2012). Effect of the 5-HT6 receptor antagonist, SB-399885, on cognition, hippocampal cell proliferation and protein expression in the neurodevelopmental model of schizophrenia. Serotonin Club meeting, Abstract p. 60. July 10–12, 2012. Montpellier, France.Search in Google Scholar

Koenig, P., Smith, E.E., Troiani, V., Anderson, C., Moore, P., and Grossman, M. (2009). Medial temporal lobe involvement in an implicit memory task: evidence of collaborating implicit and explicit memory systems from FMRI and Alzheimer’s disease. Cereb Cortex 18, 2831–2843.10.1093/cercor/bhn043Search in Google Scholar PubMed PubMed Central

Krishnamurthy, S., Garabadu, D., and Joy, K.P. (2013). Risperidone ameliorates post-traumatic stress disorder-like symptoms in modified stress re-stress model. Neuropharmacology 75, 62–77.10.1016/j.neuropharm.2013.07.005Search in Google Scholar PubMed

Lacivita, E., Di Pilato, P., De Giorgio, P., Colabufo, N.A., Berardi, F., Perrone, R., and Leopoldo, M. (2012). The therapeutic potential of 5-HT1A receptors: a patent review. Expert Opin. Ther. Pat. 22, 887–902.10.1517/13543776.2012.703654Search in Google Scholar PubMed

Lamprecht, R. (2014). Actin cytoskeleton in memory formation. Prog. Neurobiol. Feb 12. pii: S0301-0082(14)00016-1. doi: 10.1016/j.pneurobio.2014.02.001. [Epub ahead of print] PMID: 24530292.10.1016/j.pneurobio.2014.02.001Search in Google Scholar PubMed

Landry, C.D., Kandel, E.R., and Rajasethupathy, P. (2013). New mechanisms in memory storage: piRNAs and epigenetics. Trends Neurosci. 36, 535–542.10.1016/j.tins.2013.05.004Search in Google Scholar PubMed

Leopoldo, M., Lacivita, E., De Giorgio, P., Fracasso, C., Guzzetti, S., Caccia, S., Contino, M., Colabufo, N.A., Berardi, F., and Perrone, R. (2008). Structural modifications of N-(1,2,3,4-tetrahydronaphthalen-1-yl)-4-aryl-1-piperazinehexanamides: influence on lipophilicity and 5-HT7 receptor activity. Part III. J. Med. Chem. 51, 5813–5822.10.1021/jm800615eSearch in Google Scholar PubMed

Leopoldo, M., Lacivita, E., Berardi, F., and Perrone, R. (2010). 5-HT7 receptor modulators: a medicinal chemistry survey of recent patent literature (2004–2009). Expert Opin. Ther. Pat. 20, 739–754.10.1517/13543776.2010.484802Search in Google Scholar PubMed

Lesch, K.P. and Waider, J. (2012). Serotonin in the modulation of neural plasticity and networks: implications for neurodevelopmental disorders. Neuron 76, 175–191. doi: 10.1016/j.neuron.2012.09.013. PMID: 23040814 [PubMed – in process]10.1016/j.neuron.2012.09.013Search in Google Scholar PubMed

Li, Z., Huang, M., Prus, A.J., Dai, J., and Meltzer, H.Y. (2007). 5-HT6 receptor antagonist SB-399885 potentiates haloperidol and risperidone-induced dopamine efflux in the medial prefrontal cortex or hippocampus Brain Res. 1134, 70–78.10.1016/j.brainres.2006.11.060Search in Google Scholar PubMed

Lieben, C.K.J., Blokland, A., Sik, A., Sung, E., van Nieuwenhuizen, P., and Schreiber, R. (2005). The selective 5-HT6 receptor antagonist Ro4368554 restores memory performance in cholinergic and serotonergic models of memory deficiency in the rat. Neuropsychopharmacology 30, 2169–2179.10.1038/sj.npp.1300777Search in Google Scholar PubMed

Liem-Moolenaar, M., Rad, M., Zamuner, S., Cohen, A.F., Lemme, F., Franson, K.L., van Gerven J.M., and Pich E.M. (2011). Central nervous system effects of the interaction between risperidone (single dose) and the 5-HT6 antagonist SB742457 (repeated doses) in healthy men. Br. J. Clin. Pharmacol. 71, 907–916.10.1111/j.1365-2125.2011.03902.xSearch in Google Scholar PubMed PubMed Central

Linden, R., Martins, V.R., Prado, M.A., Cammarota, M., Izquierdo, I., and Brentani, R.R. (2008). Physiology of the prion protein. Physiol. Rev. 88, 673–728.10.1152/physrev.00007.2007Search in Google Scholar PubMed

Lindner, M.D., Hodges, D.B. Jr., Hogan, J.B., Orie, A.F., Corsa, J.A., Barten, D.M., Polson, C., Robertson, B.J., Guss, V.L., Gillman, K.W., et al. (2003). An assessment of the effects of serotonin 6 (5-HT6) receptor antagonists in rodent models of learning. J. Pharmacol. Exp. Ther. 307, 682–691.10.1124/jpet.103.056002Search in Google Scholar PubMed

Liu, G.L. and Robichaud, A.J. (2009). 5-HT6 antagonists as potential treatment for cognitive dysfunction. Drug Develop. Res. 70, 145–168.10.1002/ddr.20293Search in Google Scholar

Liu, R.Y., Shah, S., Cleary, L.J., and Byrne, J.H. (2011). Serotonin- and training-induced dynamic regulation of CREB2 in Aplysia. Learn Mem. 18, 245–249.10.1101/lm.2112111Search in Google Scholar PubMed PubMed Central

Liy-Salmeron, G. and Meneses, A. (2007). Role of 5-HT1-7 receptors in short- and long-term memory for an autoshaping task: intrahippocampal manipulations. Brain Res. 1147, 140–147.10.1016/j.brainres.2007.02.007Search in Google Scholar PubMed

Lladó-Pelfort, L., Santana, N., Ghisi, V., Artigas, F., and Celada, P. (2012). 5-HT1A receptor agonists enhance pyramidal cell firing in prefrontal cortex through a preferential action on GABA interneurons. Cereb. Cortex 22, 1487–1497.10.1093/cercor/bhr220Search in Google Scholar PubMed

Loiseau, F., Dekeyne, A., and Millan, M.J. (2008). Pro-cognitive effects of 5-HT6 receptor antagonists in the social recognition procedure in rats: implication of the frontal cortex. Psychopharmacology (Berl.) 196, 93–104.10.1007/s00213-007-0934-5Search in Google Scholar PubMed

Lorke, D.E., Lu, G., Cho, E., and Yew, D.T. (2005). Serotonin 5-HT2A and 5-HT6 receptors in the prefrontal cortex of Alzheimer and normal aging patients. BMC Neurosci. 6, 36.Search in Google Scholar

Ly, S., Pishdari, B., Lok, L.L., Hajos, M., and Kocsis, B. (2013). Activation of 5HT6 receptors modulates sleep-wake activity and hippocampal Theta oscillation. ACS Chem. 4, 191–199.Search in Google Scholar

Lynch, M.A. (2004). Long term potentiation. Physiol. Rev. 84, 87–136.10.1152/physrev.00014.2003Search in Google Scholar PubMed

Lynch, G., Kramár, E.A., Babayan, A.H., Rumbaugh, G., and Gall, C.M. (2013). Differences between synaptic plasticity thresholds result in new timing rules for maximizing long-term potentiation. Neuropharmacology 64, 27–36.10.1016/j.neuropharm.2012.07.006Search in Google Scholar PubMed PubMed Central

Mahar, I., Bambico, F.R., Mechawar, N., and Nobrega, J.N. (2014). Stress, serotonin, and hippocampal neurogenesis in relation to depression and antidepressant effects. Neurosci. Biobehav. Rev. 38, 173–192.10.1016/j.neubiorev.2013.11.009Search in Google Scholar

Maher-Edwards, G., Zvartau-Hind, M., Hunter, A.J., Gold, M., Hopton, G., Jacobs, G., Davy, M., and Williams, P. (2009). Double-blind, controlled Phase II study of a 5-HT6 receptor antagonist, SB-742457. Curr. Alzheimer Res. 7, 374–385.10.2174/156720510791383831Search in Google Scholar

Manuel-Apolinar, L. and Meneses, A. (2004). 8-OH-DPAT facilitated memory consolidation and increased hippocampal and cortical cAMP production. Behav. Brain Res. 148, 179–184.10.1016/S0166-4328(03)00186-4Search in Google Scholar

Manuel-Apolinar, L., Rocha, L., Pascoe, D., Castillo, E., Castillo, C., and Meneses, A. (2005). Modifications of 5-HT4 receptor expression in rat brain during memory consolidation. Brain Res. 1042, 73–81.10.1016/j.brainres.2005.02.020Search in Google Scholar PubMed

Mar, A.C., Horner, A.E., Nilsson, S.R., Alsiö, J., Kent, B.A., Kim, C.H., Holmes, A., Saksida, L.M. and Bussey, T.J. (2013). The touchscreen operant platform for assessing executive function in rats and mice. Nat. Protoc. 8, 1985–2005.10.1038/nprot.2013.123Search in Google Scholar PubMed PubMed Central

Marazziti, D., Baroni, S., Pirone, A., Giannaccini, G., Betti Schmid, L., Vatteroni, E., Palego, L., Borsini, F., Bordi, F., Piano, I., et al. (2012). Distribution of serotonin receptor of type 6 (5-HT6) in human brain post-mortem. A pharmacology, autoradiography and immunohistochemistry study. Neurochem. Res. 37, 920–927.10.1007/s11064-011-0684-ySearch in Google Scholar PubMed

Marcos, B., Gil-Bea, F.J., Hirst, W.D., García-Alloza, M., and Ramírez, M.J. (2006). Lack of localization of 5-HT6 receptors on cholinergic neurons: implication of multiple neurotransmitter systems in 5-HT6 receptor-mediated acetylcholine release. Eur. J. Neurosci. 24, 299–1306.10.1111/j.1460-9568.2006.05003.xSearch in Google Scholar PubMed

Marcos, B., García-Alloza, M., Gil-Bea, F.J., Chuang, T.T., Francis, P.T., Chen, C.P., Tsang, S.W., Lai, M.K., and Ramirez, M.J. (2008). Involvement of an altered 5-HT6 receptor function in behavioral symptoms of Alzheimer’s disease. J. Alzheimer’s Dis. 14, 43–50.10.3233/JAD-2008-14104Search in Google Scholar

Marcos, B., Cabero, M., Solas, M., Aisa, B., and Ramirez, M.J. (2010). Signaling pathways associated with 5-HT6 receptors: relevance for cognitive effects. Int. J. Neuropsychopharmacol. 9, 1–10.Search in Google Scholar

Marin, P., Meffre, J., Chaumont-Dubel, S., La Cour, C.L., Loiseau, F., Watson, D.J.G., Dekeyne, A., Martial Séveno, M., Déléris, P., Fone, K.C.F., et al. (2012a). 5-HT6 receptors disrupt cognition by recruiting mTOR: relevance to schizophrenia. Serotonin Club Meeting, Abstract p: 58. July 10–12. Montpellier, France.Search in Google Scholar

Marin, P., Becamel, C., Dumuis, A., and Bockaert, J. (2012b). 5-HT receptor-associated protein networks: new targets for drug discovery in psychiatric disorders? Curr. Drug Targets 13, 28–52.10.2174/138945012798868498Search in Google Scholar PubMed

Marshall, J.F. and O’Dell, S.J. (2012). Methamphetamine influences on brain and behavior: unsafe at any speed? Trends Neurosci. 35, 536–545.Search in Google Scholar

Martin, C. and Sibson, N.R. (2008).Pharmacological MRI in animal models: a useful tool for 5-HT research? Neuropharmacology 55, 1038–1047.10.1016/j.neuropharm.2008.08.014Search in Google Scholar PubMed

Martyn, A.C., De Jaeger, X., Magalhães, A.C., Kesarwani, R., Gonçalves, D.F., Raulic, S., Guzman, M.S., Jackson, M.F., Izquierdo I., Macdonald, J.F., et al. (2012). Elimination of the vesicular acetylcholine transporter in the forebrain causes hyperactivity and deficits in spatial memory and long-term potentiation. Proc. Natl. Acad. Sci. USA 109, 17651–17656.10.1073/pnas.1215381109Search in Google Scholar

Mathur, B.N. and Lovinger, D.M. (2012). Serotonergic action on dorsal striatal function. Parkinsonism Relat. Disord. 18, S129–S131.10.1016/S1353-8020(11)70040-2Search in Google Scholar

Matthys, A., Haegeman, G., Van Craenenbroeck, K., and Vanhoenacker, P. (2011). Role of the 5-HT7 receptor in the central nervous system: from current status to future perspectives. Mol. Neurobiol. 43, 228–253.10.1007/s12035-011-8175-3Search in Google Scholar

McGaugh, J.L. (1966). Time-dependent processes in memory storage. Science 153, 1351–1358.10.1126/science.153.3742.1351Search in Google Scholar

McGaugh, J.L. (1989). Dissociating learning and performance: drug and hormone enhancement of memory storage. Brain Res. Bull. 4–5, 339–345.10.1016/0361-9230(89)90220-7Search in Google Scholar

McGaugh, J.L. (2006). Make mild moments memorable: add a little arousal. Trends Cogn. Sci. 10, 345–347.10.1016/j.tics.2006.06.001Search in Google Scholar PubMed

McGaugh, J.L. (2013). Making lasting memories: remembering the significant. Proc. Natl. Acad. Sci. USA 110 Suppl 2, 10402–10407.10.1073/pnas.1301209110Search in Google Scholar PubMed PubMed Central

McIntosh, A.L., Ballard, T.M., Steward, L.J., Moran, P.M., and Fone, K.C. (2013). The atypical antipsychotic risperidone reverses the recognition memory deficits induced by post-weaning social isolation in rats. Psychopharmacology (Berl). 228, 31–42.10.1007/s00213-013-3011-2Search in Google Scholar PubMed

Means, A.R. (2008). The year in basic science: calmodulin kinase cascades. Mol. Endocrinol. 22, 2759–2765.10.1210/me.2008-0312Search in Google Scholar PubMed PubMed Central

Meffre, J., Chaumont-Dubel, S., Mannoury la Cour, C., Loiseau, F., Watson, D.J., Dekeyne, A., Séveno, M., Rivet, J.M., Gaven, F., and Déléris, P. (2012). 5-HT(6) receptor recruitment of mTOR as a mechanism for perturbed cognition in schizophrenia. EMBO Mol. Med. 4, 1043–1056.10.1002/emmm.201201410Search in Google Scholar PubMed PubMed Central

Meltzer, H.Y. (2012). Clozapine: balancing safety with superior antipsychotic efficacy. Clin. Schizophr. Relat. Psychoses 6, 134–144.10.3371/CSRP.6.3.5Search in Google Scholar

Meltzer, H.Y., Rajagopal, L., Huang, M., Oyamada, Y., Kwon, S., and Horiguchi, M. (2013). Translating the N-methyl-D-aspartate receptor antagonist model of schizophrenia to treatments for cognitive impairment in schizophrenia. Int. J. Neuropsychopharmacol. 16, 2181–2194.10.1017/S1461145713000928Search in Google Scholar

Meneses, A. (1999). 5-HT system and cognition. Neurosci. Biobehav. Rev. 23, 1111–1125.10.1016/S0149-7634(99)00067-6Search in Google Scholar

Meneses, A. (2001a). Role of 5-HT6 receptors in memory formation. Drug News Perspect. 14, 396–400.10.1358/dnp.2001.14.7.660941Search in Google Scholar

Meneses, A. (2001b). Effects of the 5-HT6 receptor antagonist Ro 04-6790 on learning consolidation. Behav. Brain Res. 118, 107–110.10.1016/S0166-4328(00)00316-8Search in Google Scholar

Meneses, A. (2001c). Could the 5-HT1B receptor inverse agonism affect learning consolidation? Neurosci. Biobehav. Rev. 25, 193–201.10.1016/S0149-7634(01)00007-0Search in Google Scholar

Meneses, A. (2002). Tianeptine: 5-HT uptake sites and 5-HT1-7 receptors modulate memory formation in an autoshaping Pavlovian/instrumental task. Neurosci. Biobehav. Rev. 26, 309–319.10.1016/S0149-7634(02)00005-2Search in Google Scholar

Meneses, A. (2003). Pharmacological analysis of an associative learning task: 5-HT1 to 5-HT7 receptor subtypes function on a Pavlovian/instrumental autoshaped memory. Learn. Mem. 10, 363–372.10.1101/lm.60503Search in Google Scholar PubMed PubMed Central

Meneses, A. (2004). Effects of the 5-HT7 receptor antagonists SB-269970 and DR 4004 in autoshaping Pavlovian/instrumental learning task. Behav. Brain Res. 155, 275–282.10.1016/j.bbr.2004.04.026Search in Google Scholar PubMed

Meneses, A. (2007a). Stimulation of 5-HT1A, 5-HT1B, 5-HT2A/2A, 5-HT3 and 5-HT4 receptors or 5-HT uptake inhibition: short- and long-term memory. Behav. Brain Res. 184, 81–90.10.1016/j.bbr.2007.06.026Search in Google Scholar PubMed

Meneses, A. (2007b). Do serotonin1-7 receptors modulate short and long-term memory? Neurobiol. Learn Mem. 87, 561–572.10.1016/j.nlm.2006.12.005Search in Google Scholar PubMed

Meneses, A. (2013). 5-HT systems: emergent targets for memory formation and memory alterations. Rev. Neurosci. 24, 629–664.10.1515/revneuro-2013-0026Search in Google Scholar PubMed

Meneses, A. (2014). Neurotransmitters and Memory: Cholinergic, Glutamatergic, GaBAergic, Mdopaminergic, Serotonergic, Signaling, and Memory. Identification of Neural Markers Accompanying Memory. A. Meneses, ed. (San Diego, USA: Elsevier), pp. 5–45.10.1016/B978-0-12-408139-0.00002-XSearch in Google Scholar

Meneses, A. and Hong, E. (1997). A pharmacological analysis of serotonergic receptors: effects of their activation of blockade in learning. Prog. Neuropsychopharmacol. Biol. Psychiatry 21, 273–296.Search in Google Scholar

Meneses, A. and Liy-Salmeron, G. (2012). Serotonin and emotion, learning and memory. Rev. Neurosci. 23, 443–453.10.1515/revneuro-2012-0060Search in Google Scholar PubMed

Meneses, A. and Perez-Garcia, G. (2007). 5-HT1A receptors and memory. Neurosci. Biobehav. Rev. 3, 705–27.10.1016/j.neubiorev.2007.02.001Search in Google Scholar PubMed

Meneses, A., Manuel-Apolinar, L., Castillo, C., and Castillo, E. (2007). Memory consolidation and amnesia modify 5-HT6 receptors expression in rat brain: an autoradiographic study. Behav. Brain Res. 178, 53–61.10.1016/j.bbr.2006.11.048Search in Google Scholar PubMed

Meneses, A., Perez-Garcia, G., Liy-Salmeron, G., Flores-Galvez, D., Castillo, C., and Castillo, E. (2008). The effects of the 5-HT6 receptor agonist EMD and the 5-HT7 receptor agonist AS19 on memory formation. Behav. Brain Res. 195, 112–119.10.1016/j.bbr.2007.11.023Search in Google Scholar PubMed

Meneses, A., Perez-Garcia, G., Liy-Salmeron, G., Ponce-Lopez, T., Tellez, R., and Flores-Galvez, D. (2009). Associative Learning, Memory and Serotonin: A Neurobiological and Pharmacological Analysis. Models of Neuropharmacology. L.L. Rocha Arrieta, and V. Granados-Soto, eds. (Transworld Research Network. Trivandrum-695 023, Kerala, India). pp. 169–182.Search in Google Scholar

Meneses, A., Pérez-García, G., Ponce-Lopez, T., and Castillo, C. (2011a). 5-HT6 receptor memory and amnesia: behavioral pharmacology – learning and memory processes. Int. Rev. Neurobiol. 96, 27–47.10.1016/B978-0-12-385902-0.00002-4Search in Google Scholar PubMed

Meneses, A., Perez-Garcia, G., Ponce-Lopez, T., Tellez, R., and Castillo, C. (2011b). Serotonin transporter and memory. Neuropharmacology 61, 355–363.10.1016/j.neuropharm.2011.01.018Search in Google Scholar PubMed

Mestre, T.A., Zurowski, M., and Fox, S.H. (2013). 5-Hydroxytryptamine 2A receptor antagonists as potential treatment for psychiatric disorders. Expert Opin. Investig. Drugs 22, 411–421.10.1517/13543784.2013.769957Search in Google Scholar PubMed

Meyer, J.H. (2012). Neuroimaging markers of cellular function in major depressive disorder: implications for therapeutics, personalized medicine, and prevention. Clin. Pharmacol. Ther. 91, 201–214.10.1038/clpt.2011.285Search in Google Scholar PubMed

Millan, M.J., Gobert, A., Roux, S., Porsolt, R., Meneses, A., Carli, M., Di Cara, B., Jaffard, R., Rivet, J.M., Lestage, P., et al. (2004). The serotonin1A receptor partial agonist S15535 [4-(benzodioxan-5-yl)1-(indan-2-yl)piperazine] enhances cholinergic transmission and cognitive function in rodents: a combined neurochemical and behavioral analysis. J. Pharmacol. Exp. Ther. 311, 190–203.10.1124/jpet.104.069625Search in Google Scholar PubMed

Millan, M.J., Marin, P., Bockaert, J., and la Cour, C.M. (2008). Signaling at G-protein-coupled serotonin receptors: recent advances and future research directions. Trends Pharmacol. Sci. 29, 454–464.10.1016/j.tips.2008.06.007Search in Google Scholar PubMed

Millan, M.J., Agid, Y., Brüne, M., Bullmore, E.T., Carter, C.S., Clayton, N.S., Connor, R., Davis, S., Deakin, B., DeRubeis, R.J., et al. (2012). Cognitive dysfunction in psychiatric disorders: characteristics, causes and the quest for improved therapy. Nat Rev Drug Discov. 11, 141–168.10.1038/nrd3628Search in Google Scholar PubMed

Mitchell, E.S. and Neumaier, J.F. (2005). 5-HT6 receptors: a novel target for cognitive enhancement. Pharmacol. Ther. 108, 320–333.10.1016/j.pharmthera.2005.05.001Search in Google Scholar PubMed

Mitchell, E.S., Sexton, T., and Neumaier, J.F. (2007). Increased expression of 5-HT6 receptors in the rat dorsomedial striatum impairs instrumental learning. Neuropsychopharmacology 32, 1520–1530.10.1038/sj.npp.1301284Search in Google Scholar PubMed

Mitchell, E.S., McDevitt, R.A., and Neumaier, J.F. (2009). Adaptations in 5-HT receptor expression and function: implications for treatment of cognitive impairment in aging. J. Neurosci. Res. 87, 2803–2811.10.1002/jnr.22100Search in Google Scholar PubMed

Modica, M.N., Pittalà, V., Romeo, G., Salerno, L., and Siracusa, M.A. (2010). Serotonin 5-HT3 and 5-HT4 ligands: an update of medicinal chemistry research in the last few years. Curr. Med. Chem. 17, 334–362.10.2174/092986710790192730Search in Google Scholar PubMed

Molodtsova, G.F. (2008). Serotonergic mechanisms of memory trace retrieval. Behav. Brain Res. 195, 7–16.10.1016/j.bbr.2007.12.005Search in Google Scholar PubMed

Moret, C., Grimaldi, B., Massot, O., and Fillion, G. (2003). The role and therapeutic potential of 5-HT-moduline in psychiatry. Semin. Clin. Neuropsychiatry 8, 137–146.10.1053/scnp.2003.50013Search in Google Scholar PubMed

Moyano, S., Del Río, J., and Frechilla, D. (2004). Role of hippocampal CaMKII in serotonin 5-HT1A receptor-mediated learning deficit in rats. Neuropsychopharmacology 29, 2216–2224.10.1038/sj.npp.1300504Search in Google Scholar

Myhrer, T. (2003). Neurotransmitter systems involved in learning and memory in the rat: a meta-analysis based on studies of four behavioral tasks. Brain Res. Rev. 41, 268–287.10.1016/S0165-0173(02)00268-0Search in Google Scholar

Na, C.H., Jones, D.R., Yang, Y., Wang, X., Xu, Y., and Peng, J. (2012). Synaptic protein ubiquitination in rat brain revealed by antibody-based ubiquitome analysis. J. Proteome. Res. 11, 4722–4732.10.1021/pr300536kSearch in Google Scholar PubMed PubMed Central

Nikiforuk, A. and Popik, P. (2013). Amisulpride promotes cognitive flexibility in rats: the role of 5-HT7 receptors. Behav. Brain Res. 248, 136–140.10.1016/j.bbr.2013.04.008Search in Google Scholar PubMed

Nikiforuk, A., Kos, T., Fijał, K., Hołuj, M., Rafa, D., and Popik, P. (2013). Effects of the selective 5-HT7 receptor antagonist SB-269970 and amisulpride on ketamine-induced schizophrenia-like deficits in rats. PLoS One 8, e66695.10.1371/journal.pone.0066695Search in Google Scholar PubMed PubMed Central

Nordquist, N. and Oreland, L. (2010). Serotonin, genetic variability, behaviour, and psychiatric disorders – a review. Ups. J. Med. Sci. 115, 2–10.10.3109/03009730903573246Search in Google Scholar PubMed PubMed Central

Noristani, H.N., Verkhratsky, A., and Rodríguez, J.J. (2012). High tryptophan diet reduces CA1 intraneuronal β-amyloid in the triple transgenic mouse model of Alzheimer’s disease. Aging Cell 11, 810–822.10.1111/j.1474-9726.2012.00845.xSearch in Google Scholar PubMed

Ögren, S.O., Eriksson, T.M., Elvander-Tottie, E., D’Addario, C., Ekström, J.C., Svenningsson, P., Meister, B., Kehr, J., and Stiedl, O. (2008). The role of 5-HT1A receptors in learning and memory. Behav. Brain Res. 195, 54–77.10.1016/j.bbr.2008.02.023Search in Google Scholar PubMed

Owen, G.R. and Brenner, E.A. (2012). Mapping molecular memory: navigating the cellular pathways of learning. Cell. Mol. Neurobio. 32, 919–941.10.1007/s10571-012-9836-0Search in Google Scholar PubMed

Packard, M.G. and Knowlton, B.J. (2002). Learning and memory functions of the basal ganglia. Ann. Rev. Neurosci. 25, 563–593.10.1146/annurev.neuro.25.112701.142937Search in Google Scholar PubMed

Pappatà, S., Salvatore, E., and Postiglione, A. (2008). In vivo imaging of neurotransmission and brain receptors in dementia. J. Neuroimaging 18, 111–124.10.1111/j.1552-6569.2007.00194.xSearch in Google Scholar

Park, S.M. and Williams, C.L. (2012). Contribution of serotonin type 3 receptors in the successful extinction of cued or contextual fear conditioned responses: interactions with GABAergic signaling. Rev. Neurosci. 23, 555–569.10.1515/revneuro-2012-0052Search in Google Scholar

Pattij, T. (2002). 5-HT1A receptor knockout mice and anxiety: behavioral and physiological studies. (Ph.D. thesis, Universiteit Utrecht, The Netherlands.)Search in Google Scholar

Peele, D.B. and Vincent, A. (1989). Strategies for assessing learning and memory, 1978–1987: a comparison of behavioral toxicology, psychopharmacology, and neurobiology. Neurosci. Biobehav. Rev. 13, 317–322.10.1016/S0149-7634(89)80068-5Search in Google Scholar

Perez-García, G. and Meneses, A. (2005). Oral administration of the 5-HT6 receptor antagonists SB-357134 and SB-399885 improves memory formation in an autoshaping learning task. Pharmacol. Biochem. Behav. 81, 673–682.10.1016/j.pbb.2005.05.005Search in Google Scholar

Perez-Garcia, G. and Meneses, A. (2009). Memory time-course: mRNA 5-HT1A and 5-HT7 receptors. Behav. Brain Res. 202, 102–113.10.1016/j.bbr.2009.03.027Search in Google Scholar

Pérez-García, G. and Meneses, A. (2008a). Memory formation, amnesia, improved memory and reversed amnesia: 5-HT role. Behav. Brain Res. 195, 17–29.10.1016/j.bbr.2007.11.027Search in Google Scholar

Pérez-García, G. and Meneses, A. (2008b). Ex-vivo study of 5-HT1A and 5-HT7 receptor agonists and antagonists on cAMP accumulation during memory formation and amnesia. Behav. Brain Res. 195, 139–146.10.1016/j.bbr.2008.07.033Search in Google Scholar

Pérez-García, G., González-Espinosa, C., and Meneses, A. (2006). An mRNA expression analysis of stimulation and blockade of 5-HT7 receptors during memory consolidation. Behav. Brain Res. 169, 83–92.10.1016/j.bbr.2005.12.013Search in Google Scholar

Pérez-Torres, S., Cortés, R., Tolnay, M., Probst, A., Palacios, J.M., and Mengod, G. (2003). Alterations on phosphodiesterase type 7 and 8 isozyme mRNA expression in Alzheimer’s disease brains examined by in situ hybridization. Exp. Neurol. 182, 322–334.10.1016/S0014-4886(03)00042-6Search in Google Scholar

Pignataro, G., Capone, D., Polichetti, G., Vinciguerra, A., Gentile, A., Di Renzo, G., and Annunziato, L. (2011). Neuroprotective, immunosuppressant and antineoplastic properties of mTOR inhibitors: current and emerging therapeutic options. Curr. Opin. Pharmacol. 11, 378–394.10.1016/j.coph.2011.05.003Search in Google Scholar PubMed

Pittala, V. and Pittala, D. (2011). Latest advances towards the discovery of 5-HT7 receptor ligands. Mini. Rev. Med. Chem. 11, 1108d//21.10.2174/138955711797655353Search in Google Scholar

Puig, M.V. and Gulledge, A.T. (2011). Serotonin and prefrontal cortex function: neurons, networks, and circuits. Mol. Neurobiol. 44, 449–464.10.1007/s12035-011-8214-0Search in Google Scholar

Radley, J.J., Farb, C.R., He, Y., Janssen, W.G., Rodrigues, S.M., Johnson, L.R., Hof, P.R., LeDoux, J.E., and Morrison, J.H. (2007). Distribution of NMDA and AMPA receptor subunits at thalamo-amygdaloid dendritic spines. Brain. Res. 1134, 87–94.10.1016/j.brainres.2006.11.045Search in Google Scholar

Rajasethupathy, P., Antonov, I., Sheridan, R., Frey, S., Sander, C., Tuschl, T., and Kandel, E.R. (2012). A role for neuronal piRNAs in the epigenetic control of memory-related synaptic plasticity. Cell 149, 693–707.10.1016/j.cell.2012.02.057Search in Google Scholar

Ramírez, M.J. (2013). 5-HT6 receptors and Alzheimer’s disease. Alzheimers Res. Ther. 5, 15.10.1186/alzrt169Search in Google Scholar

Rapanelli, M., Frick, L.R., Bernardez-Vidal, M., and Zanutto, B.S. (2013). Different MK-801 administration schedules induce mild to severe learning impairments in an operant conditioning task: role of buspirone and risperidone in ameliorating these cognitive deficits. Behav. Brain Res. 257C, 156–165.10.1016/j.bbr.2013.09.043Search in Google Scholar

Raymond, J.R., Mukhin, Y.V., Gelasco, A., Turner, J., Collinsworth, G., Gettys, T.W., Grewal, J.S., and Garnovskaya, M.N. (2001). Multiplicity of mechanisms of serotonin receptor signal transduction. Pharmacol. Ther. 92, 179–212.10.1016/S0163-7258(01)00169-3Search in Google Scholar

Raymond, J.R., Turner, J.H., Gelasco, A.K., Ayiku, H.B., Coaxum, S.D., Arthur, J.M., and Garnovskaya, M.N. (2006). The Serotonin Receptors. N.J. Totowa and B.L. Roth, ed., (Human Press, N.J. Totowa), pp. 143–2006.Search in Google Scholar

Reis, H.J., Guatimosim, C., Paquet, M., Santos, M., Ribeiro, F.M., Kummer, A., Schenatto, G., Salgado, J.V., Vieira, L.B., Teixeira, A.L. et al. (2009). Neuro-transmitters in the central nervous system and their implication in learning and memory processes. Curr. Med. Chem. 16, 796–840.10.2174/092986709787549271Search in Google Scholar PubMed

Reid, M., Carlyle, I., Caulfield, W.L., Clarkson, T.R., Cusick, F., Epemolu, O., Gilfillan, R., Goodwin, R., Jaap, D., O’Donnell, E.C., et al. (2010). The discovery and SAR of indoline-3-carboxamides – A new series of 5-HT6 antagonists. Bioorg. Med. Chem. Lett. 20, 3713–3716.10.1016/j.bmcl.2010.04.085Search in Google Scholar PubMed

Renner, U., Zeug, A., Woehler, A., Niebert, M., Dityatev, A., Dityateva, G., Gorinski, N., Guseva, D., Abdel-Galil, D., Fröhlich, M., et al. (2012). Heterodimerization of serotonin receptors 5-HT1A and 5-HT7 differentially regulates receptor signalling and trafficking. J. Cell. Sci. 125, 2486–2499.10.1242/jcs.101337Search in Google Scholar PubMed

Richter, J.D. and Klann, E. (2009). Making synaptic plasticity and memory last: mechanisms of translational regulation. Genes Dev. 23, 1–11.10.1101/gad.1735809Search in Google Scholar

Riekkinen, M., Sirviö, J., Toivanen, T., and Riekkinen, P. Jr. (1995). Combined treatment with a 5HT1A receptor agonist and a muscarinic acetylcholine receptor antagonist disrupts water maze navigation behavior. Psychopharmacology (Berl) 122, 137–146.10.1007/BF02246088Search in Google Scholar

Riemer, C., Borroni, E., Levet-Trafit, B., Martin, J.R., Poli, S., Porter, R.H.P., and Bös, M. (2003). Influence of the 5-HT6 receptor on acetylcholine release in the cortex: pharmacological characterization of 4-(2-Bromo-6-pyrrolidin-1-ylpyridine-4-sulfonyl)phenylamine, a potent and selective 5-HT6 receptor antagonist. J. Med. Chem. 46, 1273–1276.10.1021/jm021085cSearch in Google Scholar

Roberts, A.J. and Hedlund, P.B. (2012). The 5-HT7 receptor in learning and memory. Hippocampus 22, 762–771.10.1002/hipo.20938Search in Google Scholar

Roberts, J.C., Reavill, C., East, S.Z., Harrison, P.J., Patel, S., Routledge, C., and Leslie, R.A. (2002). The distribution of 5-HT6 receptors in rat brain: an autoradiographic binding study using the radiolabeled 5-HT6 receptor antagonist [125I]SB-258585. Brain Res. 934, 49–57.10.1016/S0006-8993(02)02360-0Search in Google Scholar

Roberts, P.D., Spiros, A., and Geerts, H. (2012). Simulations of symptomatic treatments for Alzheimer’s disease: computational analysis of pathology and mechanisms of drug action. Alzheimers Res Ther. 4, 50. [Epub ahead of print] PMID: 23181523.Search in Google Scholar

Rodríguez, J.J., Noristani, H.N., and Verkhratsky, A. (2012). The serotonergic system in ageing and Alzheimer’s disease. Prog Neurobiol. 99, 15–41.10.1016/j.pneurobio.2012.06.010Search in Google Scholar PubMed

Rogers, D.C., and Hagan, J.J. (2001). 5-HT6 receptor antagonists enhance retention of a water maze task in the rat. Psychopharmacology (Berl.) 158, 114–119.10.1007/s002130100840Search in Google Scholar PubMed

Romero, G., Sánchez, E., Pujol, M., Pérez, P., Codony, X., Holenz, J., Buschmann, H., and Pauwels, P.J. (2006). Efficacy of selective 5-HT6 receptor ligands determined by monitoring 5-HT6 receptor-mediated cAMP signaling pathways. Br. J. Pharmacol. 148, 1133–1143.10.1038/sj.bjp.0706827Search in Google Scholar PubMed PubMed Central

Rossé, G. and Schaffhauser, H. (2010). 5-HT6 receptor antagonists as potential therapeutics for cognitive impairment. Curr. Top Med. Chem. 10, 207–221.10.2174/156802610790411036Search in Google Scholar PubMed

Roth, B.L., Hanizavareh, S.M., and Blum, A.E. (2004). Serotonin receptors represent highly favorable molecular targets for cognitive enhancement in schizophrenia and other disorders. Psychopharmacol (Berl.) 174, 17–24.10.1007/s00213-003-1683-8Search in Google Scholar PubMed

Ruat, M., Traiffort, E., Arrang, J.M., Tardivel-Lacombe, J., Diaz, J., Leurs, R., and Schwartz, J.C. (1993). A novel rat serotonin (5-HT6) receptor: molecular cloning, localization and stimulation of cAMP accumulation. Biochem. Biophys. Res. Com. 193, 268–276.10.1006/bbrc.1993.1619Search in Google Scholar

Ruotsalainen, S., Miettinen, R., MacDonald, E., Riekkinen, M., and Sirviö, J. (1998). The role of the dorsal raphe-serotonergic system and cholinergic receptors in the modulation of working memory. Neurosci. Biobehav. Rev. 22, 21–31.10.1016/S0149-7634(96)00065-6Search in Google Scholar

Ruiz, N.V. and Oranias, G.O. (2010). Patents. Int Rev Neurobiol. 5-HT6 receptors, Part I. F Borsini, ed. (Oxford: Elsevier, Academic Press), pp. 36–66.10.1016/B978-0-12-384976-2.00002-2Search in Google Scholar PubMed

Russell, M.G. and Dias, R. (2002). Memories are made of this (perhaps): a review of serotonin 5-HT6 receptor ligands and their biological functions. Curr. Top Med. Chem. 2, 643–54.10.2174/1568026023393877Search in Google Scholar PubMed

Sakata, K. and Duke, S.M. (2014). Lack of BDNF expression through promoter IV disturbs expression of monoamine genes in the frontal cortex and hippocampus Neuroscience. 260, 265–275.Search in Google Scholar

Santucci, A.C, and Cardiello, J. (2004). Memory reactivation in rats treated with the 5-HT1A agonist 8-OH-DPAT: a case of gone, but not forgotten. Behav. Neurosci. 118, 248–252.10.1037/0735-7044.118.1.248Search in Google Scholar PubMed

Saulin, A., Savli, M., and Lanzenberger, R. (2012). Serotonin and molecular neuroimaging in humans using PET. Amino Acids 42, 2039–2057.10.1007/s00726-011-1078-9Search in Google Scholar PubMed

Schechter, L.E., Smith, D.L., Zhang, G.M., Li, P., Lin, Q., Rosenzweig-Lipson, S., Robichaud, A., Bernotas, R., and Beyer, C.E. (2004). WAY-466: pharmacological profile of a novel and selective 5-HT6 agonist. Inter. J. Neuropsychopharmacol. 7, S291.Search in Google Scholar

Schechter, L.E., Smith, D.L., Rosenzweig-Lipson, S., Sukoff, S.J., Dawson, L.A., Marquis, K., Jones, D., Piesla, M., Andree, T., Nawoschik, S., et al. (2005). Lecozotan (SRA-333): a selective serotonin1A receptor antagonist that enhances the stimulated release of glutamate and acetylcholine in the hippocampus and possesses cognitive-enhancing properties. J. Exp. Pharmacol. Ther. 314, 1274–1289.10.1124/jpet.105.086363Search in Google Scholar PubMed

Schmitt, J.A., Wingen, M., Ramaekers, J.G., Evers, E.A., and Riedel, W.J. (2006). Serotonin and human cognitive performance. Curr. Pharm. Des. 12, 2473–2486.10.2174/138161206777698909Search in Google Scholar PubMed

Schreiber, R., Vivian, J., Hedley, L., Szczepanski, K., Secchi, R.L., Zuzow, M., van Laarhoven, S., Moreau, J.L., Martin, J.R., Sik, A., et al. (2007). Effects of the novel 5-HT6 receptor antagonist RO4368554 in rat models for cognition and sensorimotor gating. Eur. Neuropsychopharmacol. 17, 277–288.10.1016/j.euroneuro.2006.06.009Search in Google Scholar PubMed

Sghendo, L. and Mifsud, J. (2012). Understanding the molecular pharmacology of the serotonergic system: using fluoxetine as a model. Pharm. Pharmacol. 64, 317–325.10.1111/j.2042-7158.2011.01384.xSearch in Google Scholar PubMed

Simon, N.W. and Setlow, B. (2006). Post-training amphetamine administration enhances memory consolidation in appetitive Pavlovian conditioning: implications for drug addiction. Neurobiol. Learn Mem. 86, 305–310.10.1016/j.nlm.2006.04.005Search in Google Scholar

Skelton, M.R., Williams, M.T., and Vorhees, C.V. (2008). Developmental effects of 3,4-methylenedioxymethamphetamine: a review. Behav. Pharmacol. 19, 91–111.10.1097/FBP.0b013e3282f62c76Search in Google Scholar

Sleight, A., Boess, F.G., Bös, M., and Bourson, A. (1998). The putative 5-ht6 receptor: localization and function. Ann. NY Acad. Sci. 861, 91–96.10.1111/j.1749-6632.1998.tb10178.xSearch in Google Scholar

Smith, C., Rahman, T., Toohey, N., Mazurkiewicz, J., Herrick-Davis, K., and Teitler, M. (2006). Risperidone irreversibly binds to and inactivates the h5-HT7 serotonin receptor. Mol. Pharmacol. 70, 1264–1270.10.1124/mol.106.024612Search in Google Scholar

Sossin, W.S. (2008). Defining memories by their distinct molecular traces. Trends Neurosci. 31, 170–175.10.1016/j.tins.2008.01.001Search in Google Scholar

Speranza, L., Chambery, A., Di Domenico, M., Crispino, M., Severino, V., Volpicelli, F., Leopoldo, M., Bellenchi, G.C., di Porzio, U., and Perrone-Capano, C. (2013). The serotonin receptor 7 promotes neurite outgrowth via ERK and Cdk5 signaling pathways. Neuropharmacology 67, 155–167.10.1016/j.neuropharm.2012.10.026Search in Google Scholar

Stahl, S.M. (2010). The serotonin-7 receptor as a novel therapeutic target. J. Clin. Psychiatry 71, 1414–1415.10.4088/JCP.10bs06601grySearch in Google Scholar

Stahlman, W.D., Young, M.E., and Blaisdell, A.P. (2010). Response variability in pigeons in a Pavlovian task. Learn Behav. 38, 111–118.10.3758/LB.38.2.111Search in Google Scholar

Steckler, T. and Sahgal, A. (1995). The role of serotonergic-cholinergic interactions in the mediation of cognitive behaviour. Behav. Brain Res. 67, 165–199.10.1016/0166-4328(94)00157-BSearch in Google Scholar

Stewart, A.J., Fox, A., Morimoto, B.H., and Gozes, I. (2007). Looking for novel ways to treat the hallmarks of Alzheimer’s disease. Expert Opin. Investig. Drugs 16, 1183–1196.10.1517/13543784.16.8.1183Search in Google Scholar PubMed

Sumiyoshi, T., Higuchi, Y., and Uehara, T. (2013). Neural basis for the ability of atypical antipsychotic drugs to improve cognition in schizophrenia. Front Behav. Neurosci. 16, 140.10.3389/fnbeh.2013.00140Search in Google Scholar PubMed PubMed Central

Sweatt, J.D. (2009). Experience-dependent epigenetic modifications in the central nervous system. Biol. Psychiatry 65, 191–197.10.1016/j.biopsych.2008.09.002Search in Google Scholar PubMed PubMed Central

Szczepanski, K.V., Vivian, J.A., Dorsch, K., Blokland, A., Hedley, I., Lieben, C.K.J., Martin, J.R., Secchi, R.L., Sik, A., Sung, E., et al. (2002). Precognitive effects of the 5-HT6 receptor antagonist in rats. Soc. Neurosci. Abstract 290, 29.Search in Google Scholar

Tajiri, M., Hayata-Takano, A., Seiriki, K., Ogata, K., Hazama, K., Shintani, N., Baba, A., and Hashimoto, H. (2012). Serotonin 5-HT7 receptor blockade reverses behavioral abnormalities in PACAP-deficient mice and receptor activation promotes neurite extension in primary embryonic hippocampal neurons: therapeutic implications for psychiatric disorders. J. Mol. Neurosci. 48, 473–481.10.1007/s12031-012-9861-ySearch in Google Scholar PubMed

Tarazi, F.I., and Riva, M.A. (2013). The preclinical profile of lurasidone: clinical relevance for the treatment of schizophrenia. Expert Opin. Drug Discov. 8, 1297–1307.10.1517/17460441.2013.815163Search in Google Scholar PubMed

Talpos, J.C., Fletcher, A.C., Circelli, C., Tricklebank, M.D., and Dix, S.L. (2012). The pharmacological sensitivity of a touchscreen-based visual discrimination task in the rat using simple and perceptually challenging stimuli. Psychopharmacology (Berl.) 20, 221, 437–449.10.1007/s00213-011-2590-zSearch in Google Scholar PubMed

Tellez, R., Gómez-Viquez, L., Liy-Salmeron, G., and Meneses, A. (2012a). GABA, glutamate, dopamine and serotonin transporters expression on forgetting. Neurobiol. Learn Mem. 98, 66–77.10.1016/j.nlm.2012.05.001Search in Google Scholar PubMed

Tellez, R., Gómez-Víquez, L., and Meneses, A. (2012b). GABA, glutamate, dopamine and serotonin transporters expression on memory formation and amnesia. Neurobiol. Learn Mem. 97, 189–201.10.1016/j.nlm.2011.12.002Search in Google Scholar PubMed

Tellez, R., Rocha, L., Castillo, C., and Meneses, A. (2010). Autoradiographic study of serotonin transporter during memory formation. Behav. Brain Res. 212, 12–26.10.1016/j.bbr.2010.03.015Search in Google Scholar PubMed

Terry, A.V., Jr., Buccafusco, J.J., and Wilson, C. (2008). Cognitive dysfunction in neuropsychiatric disorders: selected serotonin receptor subtypes as therapeutic targets. Behav. Brain Res. 195, 30–38.10.1016/j.bbr.2007.12.006Search in Google Scholar PubMed

Thompson, A.J. (2013). Recent developments in 5-HT3 receptor pharmacology. Trends Pharmacol. Sci. 34, 100–109.10.1016/j.tips.2012.12.002Search in Google Scholar PubMed

Thuault, S. (2012). Cdk5 keeps memory on Trk. Nat. Neurosci. 15, 1474.10.1038/nn1112-1474Search in Google Scholar

Timotijević, I., Stanković, Ž., Todorović, M., Marković, S.Z., and Kastratović, D.A. (2012). Serotonergic organization of the central nervous system. Psychiatr. Danub. 24, S326–S330.Search in Google Scholar

Tomie, A., Lincks, M., Nadarajah, S.D., Pohorecky, L.A., and Yu, L. (2012). Pairings of lever and food induce Pavlovian conditioned approach of sign-tracking and goal-tracking in C57BL/6 mice. Behav. Brain Res. 226, 571–578.10.1016/j.bbr.2011.10.021Search in Google Scholar

Tremblay, M.A., Acker, C.M., and Davies, P. (2010). Tau phosphorylated at tyrosine 394 is found in Alzheimer’s disease tangles and can be a product of the Abl-related kinase. Arg. J. Alzheimers Dis. 19, 721–733.10.3233/JAD-2010-1271Search in Google Scholar

Turner, J.N., Coaxum, SD., Gelasco, A.K., Garnovskaya, M.N., and Raymond, J.R. (2007). Calmodulin is a 5-HT Receptor-Interacting and Regulatory Protein. In: Serotonin Receptors in Neurobiology. A, Chattopadhyay ed., [Boca Raton (FL): CRC Press] Chapter. Available from: http://www.ncbi.nlm.nih.gov/books/NBK5202/Search in Google Scholar

Upton, N., Chuang, T.T., Hunter, A.J., and Virley, D.J. (2008). 5-HT6 receptor antagonists as novel cognitive enhancing agents for Alzheimer’s disease. Neurotherapeutics 5, 458–469.10.1016/j.nurt.2008.05.008Search in Google Scholar

van Praag, H.M. (2008). The cognitive paradox in posttraumatic stress disorder: a hypothesis. Prog. Neuropsychopharmacol. Biol. Psychiatry 28, 923–935.Search in Google Scholar

Vanover, K.E. and Barrett, J.E. (1998). An automated learning and memory model in mice: pharmacological and behavioral evaluation of an autoshaped response. Behav. Pharmacol. 9, 273–283.Search in Google Scholar

Vasefi, M.S., Yang, K., Li, J., Kruk, J.S., Heikkila, J.J., Jackson, M.F., Macdonald, J.F., and Beazely, M.A. (2013). Acute 5-HT7 receptor activation increases NMDA-evoked currents and differentially alters NMDA receptor subunit phosphorylation and trafficking in hippocampal neurons. Mol. Brain. 6, 24.10.1186/1756-6606-6-24Search in Google Scholar

Vermetten, E. and Lanius, R.A. (2012). Biological and clinical framework for posttraumatic stress disorder. Handb. Clin. Neurol. 106, 291–342.10.1016/B978-0-444-52002-9.00018-8Search in Google Scholar

Volk, B., Nagy, B.J., Vas, S., Kostyalik, D., Simig, G., and Bagdy, G. (2010). Medicinal chemistry of 5-HT5A receptor ligands: a receptor subtype with unique therapeutical potential. Curr. Top Med. Chem. 10, 554–578.10.2174/156802610791111588Search in Google Scholar

Wang, Z.Z., Zhang, Y., Liu, Y.Q., Zhao, N., Zhang, Y.Z., Yuan, L., An, L., Li, J., Wang, X.Y., Qin, J.J., et al. (2013). RNA interference-mediated phosphodiesterase 4D splice variants knock-down in the prefrontal cortex produces antidepressant-like and cognition-enhancing effects. Br. J. Pharmacol. 168, 1001–1114.10.1111/j.1476-5381.2012.02225.xSearch in Google Scholar

Ward, R.P., Hamblin, M.W., Lachowicz, J.E., Hoffman, B.J., Sibley, D.R., and Dorsa, D.M. (1995). Localization of serotonin subtype 6 receptor messenger RNA in the rat brain by in situ hybridization histochemestry. Neuroscience 64, 1105–1111.10.1016/0306-4522(94)00439-CSearch in Google Scholar

Ward, B.O., Wilkinson, L.S., Robbins, T.W., and Everitt, B.J. (1999). Forebrain serotonin depletion facilitates the acquisition and performance of a conditional visual discrimination task in rats. Behav. Brain Res. 100, 51–65.10.1016/S0166-4328(98)00112-0Search in Google Scholar

Waters, K.A., Stean, T.O., Hammond, B., Virley, D.J., Upton, N., Kew, J.N., and Hussain, I. (2012). Effects of the selective 5-HT7 receptor antagonist SB-269970 in animal models of psychosis and cognition. Behav. Brain Res. 228, 211–218.10.1016/j.bbr.2011.12.009Search in Google Scholar

Wei, N., Serino, G., and Deng, X.W. (2008). The COP9 signalosome: more than a protease. Trends Biochem. Sci. 33, 592–600.10.1016/j.tibs.2008.09.004Search in Google Scholar

Weiner, M.W., Veitch, D.P., Aisen, P.S., Beckett, L.A., Cairns, N.J., Green, R.C., Harvey, D., Jack, C.R., Jagust, W., Liu, E., et al. (2012). The Alzheimer’s disease neuroimaging initiative: a review of papers published since its inception. Initiative. Alzheimers Dement. 8, S1–68. Epub 2011 Nov 2.10.1016/j.jalz.2011.09.172Search in Google Scholar

West, P.J., Marcy, V.R., Marino, M.J., and Schaffhauser, H. (2009). Activation of the 5-HT6 receptor attenuates long-term potentiation and facilitates GABAergic neurotransmission in rat hippocampus Neuroscience 164, 692–701.10.1016/j.neuroscience.2009.07.061Search in Google Scholar

Williams, G.V., Rao, S.G., and Goldman-Rakic, P.S. (2002). The physiological role of 5-HT2A receptors in working memory. J. Neurosci. 22, 2843–2854.10.1523/JNEUROSCI.22-07-02843.2002Search in Google Scholar

Wilson, C. and Terry, A.V. (2009). Enhancing cognition in neurological disorders: potential usefulness of 5-HT6 antagonists. Drug Future 34, 969–975.10.1358/dof.2009.034.12.1416986Search in Google Scholar

Witty, D., Ahmed, M., and Chuang, T.T. (2009). Advances in the design of 5-HT6 receptor ligands with therapeutical potential. Progress Med. Chem. 48, 163–225.10.1016/S0079-6468(09)04805-XSearch in Google Scholar

Woods, S., Clarke, N., Layfield, R., and Fone, K. (2012). 5-HT6 receptor agonists and antagonists enhance learning and memory in a conditioned emotion response paradigm by modulation of cholinergic and glutamatergic mechanisms. Br. J. Pharmacol. 167, 436–449.10.1111/j.1476-5381.2012.02022.xSearch in Google Scholar

Woolley, M.L., Bentley, J.C., Sleight, A.J., Marsden, C.A., and Fone, K.C. (2001). A role for 5-ht6 receptors in retention of spatial learning in the Morris water maze. Neuropharmacology 41, 210–219.10.1016/S0028-3908(01)00056-9Search in Google Scholar

Woolley, M.L., Marsden, C.A., Sleight, A.J., and Fone, K.C. (2003). Reversal of a cholinergic-induced deficit in a rodent model of recognition memory by the selective 5-HT6 receptor antagonist, Ro 04-6790. Psychopharmacology 170, 358–367.10.1007/s00213-003-1552-5Search in Google Scholar PubMed

Woolley, M.L., Marsden, C.A., and Fone, K.C. (2004). 5ht6 receptors. Curr Drugs Targets-CNS Neurological Disorders. 3, 59–79.10.2174/1568007043482561Search in Google Scholar PubMed

Xu, Y., Yan, J., Zhou, P., Li, J., Gao, H., Xia, Y., and Wang, Q. (2012). Neurotransmitter receptors and cognitive dysfunction in Alzheimer’s disease and Parkinson’s disease. Prog. Neurobiol. 97, 1–13.10.1016/j.pneurobio.2012.02.002Search in Google Scholar PubMed PubMed Central

Youn, J., Misane, I., Eriksson, T.M., Millan, M.J., Ogren, S.O., Verhage, M., and Stiedl, O. (2009). Bidirectional modulation of classical fear conditioning in mice by 5-HT1A receptor ligands with contrasting intrinsic activities. Neuropharmacology 57, 567–576.10.1016/j.neuropharm.2009.07.011Search in Google Scholar PubMed

Yun, H.M. and Rhim, H. (2011a). 5-HT6 receptor ligands, EMD386088 and SB258585, differentially regulate 5-HT6 receptor-independent events. Toxicol. In Vitro 25, 2035–2040.10.1016/j.tiv.2011.08.004Search in Google Scholar PubMed

Yun, H.M. and Rhim, H. (2011b). The serotonin-6 receptor as a novel therapeutic target. Exp. Neurobiol. 20, 159–168.10.5607/en.2011.20.4.159Search in Google Scholar PubMed PubMed Central

Yun, H.M., Kim, S., Kim, H.J., Kostenis, E., Kim, J.I., Seong, J.Y., Baik, J.H., and Rhim, H. (2007). The novel cellular mechanism of human 5-HT6 receptor through an interaction with Fyn. J. Biol. Chem. 282, 5496–5505.10.1074/jbc.M606215200Search in Google Scholar PubMed

Yun, H.M., Baik, J.H., Kang, I., Jin, C., and Rhim, H. (2010). Physical interaction of Jab1 with human serotonin 6 G-protein-coupled receptor and their possible roles in cell survival. J. Biol. Chem. 285, 10016–10029.10.1074/jbc.M109.068759Search in Google Scholar PubMed PubMed Central

Zhang, L., Chang, R.C., Chu, L.W., and Mak, H.K. (2012). Current neuroimaging techniques in Alzheimer’s disease and applications in animal models. Am. J. Nucl. Med. Mol. Imaging 2, 386–404.Search in Google Scholar

Zhang, G., Asgeirsdóttir, H.N., Cohen, S.J., Munchow, A.H., Barrera, M.P., and Stackman, R.W. (2013). Current neuroimaging techniques in Alzheimer’s disease and applications in animal models. Stimulation of serotonin 2A receptors facilitates consolidation and extinction of fear memory in C57BL/6J mice Neuropharmacology 64, 403–413.Search in Google Scholar

Zhou, W., Chen, L., Paul, J., Yang, S., Li, F., Sampson, K., Woodgett, J.R., Beaulieu, J.M., Gamble, K.L., and Li, X. (2012). The effects of glycogen synthase kinase-3beta in serotonin neurons. PLoS One 7, e43262.10.1371/journal.pone.0043262Search in Google Scholar PubMed PubMed Central

Zola-Morgan, S. and Squire, L.R. (1993). Neuroanatomy of memory. Ann. Rev. Neurosci. 168, 547–563.10.1146/annurev.ne.16.030193.002555Search in Google Scholar PubMed

Received: 2013-12-3
Accepted: 2014-1-27
Published Online: 2014-4-3
Published in Print: 2014-6-1

©2014 by Walter de Gruyter Berlin/Boston

Downloaded on 24.4.2024 from https://www.degruyter.com/document/doi/10.1515/revneuro-2014-0001/html
Scroll to top button