Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter (O) December 19, 2019

Luminescence of uranium(VI) after liquid-liquid extraction from HCl by Aliquat® 336 in n-dodecane:1-decanol by time-resolved laser-induced luminescence spectroscopy

  • Pascal E. Reiller EMAIL logo and Clarisse Mariet
From the journal Radiochimica Acta

Abstract

To investigate the extraction of uranium(VI) in HCl media by Aliquat® 336 in 1:99 (v:v) 1-decanol:n-dodecane mixture, our objective is to identify the complexe(s) in the organic phase by time-resolved laser-induced luminescence spectroscopy (TRLS). The extraction mechanism is supposed to involve the formation of [UO2Cl42(R4N+)2] in the organic phase. The occurrence of such a species leads to the presence of the UO2Cl42 species in the organic solution, which luminescence shows particular features. The luminescence spectra and decay time evolutions are obtained in the organic phase as a function of HCl concentration in the aqueous phase (0.5–6 M). The extraction of UO2Cl42 is confirmed by the particular spectrum of uranium(VI) in the organic phase, and the typical splitting of the luminescence bands, due to the crystal field effect, is clearly evidenced. The stoichiometry is verified using luminescence intensity variation as a function of the activity of Cl, and extraction constants are calculated both using the specific interaction theory and Pitzer model. A decomposition of the spectrum of the extracted complex in the organic phase is also proposed. The decay time variation as a function of temperature allows estimating the activation energy of the luminescence process of the extracted complex.

References

1. Sato, T.: Extraction of uranium(VI) from hydrochloric acid solutions by long-chain alkyl quaternary ammonium chloride. J. Inorg. Nucl. Chem. 34, 3835 (1972).10.1016/0022-1902(72)80031-9Search in Google Scholar

2. Jünger, E., Schmid, E. R.: Die Uran(IV)-extraktion aus wäßrig-organischen Salpetersäurelösungen mit Trioctylmethylammoniumnitrat (Aliquat-336). Monatsh. Chem. 105, 148 (1974).10.1007/BF00911300Search in Google Scholar

3. Bhandiwad, V. R., Swarup, R., Patil, S. K.: Extraction of actinides by quaternary amines from hydrochloric acid medium. J. Radioanal. Chem. 52, 5 (1979).10.1007/BF02517694Search in Google Scholar

4. Quinn, J. E., Ogden, M. D., Soldenhoff, K.: Solvent extraction of uranium (VI) from chloride solutions using Cyphos IL-101. Solvent Extr. Ion Exch. 31, 538 (2013).10.1080/07366299.2013.775891Search in Google Scholar

5. Mishra, S., Mohanty, S., Chakravortty, V.: Liquid-liquid extraction of uranium(VI) by the mixtures of Aliquat 336 and Alamine 304/PC88A from aq. HCl media. Radiochim. Acta 69, 195 (1995).10.1524/ract.1995.69.3.195Search in Google Scholar

6. Hellé, G., Mariet, C., Cote, G.: Liquid-liquid microflow patterns and mass transfer of radionuclides in the systems Eu(III)/HNO3/DMDBTDMA and U(VI)/HCl/Aliquat® 336. Microfluid. Nanofluid. 17, 1113 (2014).10.1007/s10404-014-1403-1Search in Google Scholar

7. Hellé, G., Mariet, C., Cote, G.: Liquid-liquid extraction of uranium(VI) with Aliquat® 336 from HCl media in microfluidic devices: combination of micro-unit operations and online ICP-MS determination. Talanta 139, 123 (2015).10.1016/j.talanta.2015.02.046Search in Google Scholar PubMed

8. Allen, P. G., Bucher, J. J., Shuh, D. K., Edelstein, N. M., Reich, T.: Investigation of aquo and chloro complexes of UO22+, NpO2+, Np4+, and Pu3+ by X-ray absorption fine structure spectroscopy. Inorg. Chem. 36, 4676 (1997).10.1021/ic970502mSearch in Google Scholar PubMed

9. Moon, E. M., Ogden, M. D., Griffith, C. S., Wilson, A., Mata, J. P.: Impact of chloride on uranium(VI) speciation in acidic sulfate ion exchange systems: towards seawater-tolerant mineral processing circuits. J. Ind. Eng. Chem. 51, 255 (2017).10.1016/j.jiec.2017.03.009Search in Google Scholar

10. Görller-Walrand, C., De Houwer, S., Fluyt, L., Binnemans, K.: Spectroscopic properties of uranyl chloride complexes in non-aqueous solvents. Phys. Chem. Chem. Phys. 6, 3292 (2004).10.1039/B317002KSearch in Google Scholar

11. Grenthe, I., Fuger, L., Konings, R. G. M., Lemire, R. J., Muller, A. B., Nguyen-Trung, C., Wanner, H.: Chemical Thermodynamics 1. Chemical Thermodynamics of Uranium. North Holland Elsevier Science Publishers B. V., Amsterdam, The Netherlands (1992), p. 715.Search in Google Scholar

12. Guillaumont, R., Fanghänel, T., Fuger, J., Grenthe, I., Neck, V., Palmer, D. A., Rand, M.: Chemical Thermodynamics 5. Update on the Chemical Thermodynamics of Uranium, Neptunium, Plutonium, Americium and Technetium. North Holland Elsevier Science Publishers B. V., Amsterdam, The Netherlands (2003), p. 918.Search in Google Scholar

13. Grenthe, I., Puigdomènech, I.: Modelling in Aquatic Chemistry. Nuclear Energy Agency, OECD, Paris (1997), p. 724.Search in Google Scholar

14. Pitzer, K. S.: Ion interaction approach: theory and data correlation. In: K. S. Pitzer (Ed.), Activity Coefficients in Electrolyte Solution, 2nd Ed., CRC Press, Boca Raton, FL, USA (1991), p. 75.10.1201/9781351069472-3Search in Google Scholar

15. Grenthe, I., Plyasunov, A. V., Spahiu, K.: Chapter IX. Estimations of medium effects on thermodynamic data. In: I. Grenthe, I. Puigdomènech (Eds.), Modelling in Aquatic Chemistry, OECD, Paris (1997), p. 325.Search in Google Scholar

16. Soderholm, L., Skanthakumar, S., Wilson, R. E.: Structural correspondence between uranyl chloride complexes in solution and their stability constants. J. Phys. Chem. A 115, 4959 (2011).10.1021/jp111551tSearch in Google Scholar PubMed

17. Nockemann, P., Servaes, K., Van Deun, R., Van Hecke, K., Van Meervelt, L., Binnemans, K., Görller-Walrand, C.: Speciation of uranyl complexes in ionic liquids by optical spectroscopy. Inorg. Chem. 46, 11335 (2007).10.1021/ic701752jSearch in Google Scholar PubMed

18. Sornein, M. O., Cannes, C., Le Naour, C., Lagarde, G., Simoni, E., Berthet, J. C.: Uranyl complexation by chloride ions. Formation of a tetrachlorouranium(VI) complex in room temperature ionic liquids [Bmim][Tf2N] and [MeBu3N][Tf2N]. Inorg. Chem. 45, 10419 (2006).10.1021/ic061751qSearch in Google Scholar PubMed

19. Ryan, J. L.: Anion exchange and non-aqueous studies of anionic chloro complexes of hexavalent actinides. Inorg. Chem. 2, 348 (1963).10.1021/ic50006a027Search in Google Scholar

20. Sato, T., Nakamura, T., Fujimatsu, T.: Diluent effect on the extraction of uranium(VI) from hydrochloric acid solutions by trioctylmethylammonium chloride. Solvent Extr. Ion Exch. 1, 709 (1983).10.1080/07366298308918423Search in Google Scholar

21. Sato, T., Nakamura, T., Kuwahara, M.: Diluent effect on the extraction of uranium(VI) from hydrochloric-acid solutions by trioctylamine. Solvent Extr. Ion Exch. 3, 283 (1985).10.1080/07366298508918513Search in Google Scholar

22. Moulin, C., Reiller, P., Beaucaire, C., Lemordant, D.: Time-resolved laser-induced spectrofluorometry studies of uranium/sodium dodecyl sulfate interactions. Appl. Spectrosc. 47, 2172 (1993).10.1366/0003702934066569Search in Google Scholar

23. Moulin, C., Reiller, P., Beaucaire, C., Lemordant, D.: Time-resolved laser-induced spectrofluorometry for the study of uranium anionic surfactant micelle interactions. J. Colloid Interface Sci. 157, 411 (1993).10.1006/jcis.1993.1203Search in Google Scholar

24. Fromentin, E., Reiller, P. E.: Influence of adipic acid on the speciation of Eu(III): review of thermodynamic data in NaCl and NaClO4 media, and a new determination of Eu-adipate complexation constant in 0.5 mol.kgw−1 NaClO4 medium by time-resolved luminescence spectroscopy. Inorg. Chim. Acta 482, 588 (2018).10.1016/j.ica.2018.06.035Search in Google Scholar

25. Kouhail, Y. Z., Benedetti, M. F., Reiller, P. E.: Eu(III)-fulvic acid complexation: evidence of fulvic acid concentration dependent interactions by time-resolved luminescence spectroscopy. Environ. Sci. Technol. 50, 3706 (2016).10.1021/acs.est.5b05456Search in Google Scholar

26. de Levie, R.: Advanced Excel for Scientific Data Analysis. Oxford University Press (2004), p. 638.Search in Google Scholar

27. Moriyasu, M., Yokoyama, Y., Ikeda, S.: Quenching of uranyl luminescence by water molecule. J. Inorg. Nucl. Chem. 39, 2211 (1977).10.1016/0022-1902(77)80397-7Search in Google Scholar

28. Moriyasu, M., Yokoyama, Y., Ikeda, S.: Anion coordination to uranyl-ion and luminescence lifetime of uranyl complex. J. Inorg. Nucl. Chem. 39, 2199 (1977).10.1016/0022-1902(77)80395-3Search in Google Scholar

29. Novotny, P., Sohnel, O.: Densities of binary aqueous solutions of 306 inorganic substances. J. Chem. Eng. Data 33, 49 (1988).10.1021/je00051a018Search in Google Scholar


Supplementary Material

The online version of this article offers supplementary material (https://doi.org/10.1515/ract-2019-3177).


Received: 2019-05-29
Accepted: 2019-11-14
Published Online: 2019-12-19
Published in Print: 2020-07-28

©2019 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 19.4.2024 from https://www.degruyter.com/document/doi/10.1515/ract-2019-3177/html
Scroll to top button