Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter February 26, 2022

A high order weak approximation for jump-diffusions using Malliavin calculus and operator splitting

  • Naho Akiyama and Toshihiro Yamada EMAIL logo

Abstract

The paper introduces a novel high order discretization scheme for expectation of jump-diffusion processes by using a Malliavin calculus approach and an operator splitting method. The test function of the target expectation is assumed to be only Lipschitz continuous in order to apply the method to financial problems. Then Kusuoka’s estimate is employed to justify the proposed discretization scheme. The algorithm with a numerical example is shown for implementation.

Award Identifier / Grant number: JPMJPR2029

Funding statement: This work is supported by JST PRESTO (Grant Number JPMJPR2029), Japan.

A Proof of Corollary 2.2

Since Q t Mall . f and Q t Jump f have the forms

Q t Mall . f ( x ) = E [ f ( X ¯ 0 , t EM ( x ) ) M t x ( B t ) ] and Q t Jump f ( x ) = E [ f ( X ¯ 0 , t Jump ( x ) ) ] ,

it holds

Q t / 2 Jump Q t Mall . Q t / 2 Jump f ( x ) = E [ f ( X ¯ t / 2 , t Jump X ¯ t EM X ¯ 0 , t / 2 Jump ( x ) ) M t X ¯ 0 , t / 2 Jump ( x ) ( B t ) ] .

Then we have

Q s 1 / 2 Jump Q s 1 Mall . Q s 1 / 2 Jump Q s 2 / 2 Jump Q s 2 Mall . Q s 2 / 2 Jump Q s n / 2 Jump Q s n Mall . Q s n / 2 Jump f ( x )
= E [ f ( X ¯ T ( n ) ( x ) ) i = 1 n M s i X ¯ t i - 1 , t i - 1 + s i / 2 Jump X ¯ t i - 1 ( n ) ( x ) ( B t i - B t i - 1 ) ] , x N ,

where

X ¯ t i ( n ) ( x ) = X ¯ t i - 1 + s i / 2 , t i Jump X ¯ t i - 1 , t i EM X ¯ t i - 1 , t i - 1 + s i / 2 Jump X ¯ t 2 + s 2 / 2 , t 3 Jump X ¯ t 1 , t 2 EM X ¯ t 2 , t 2 + s 2 / 2 Jump X ¯ t 1 / 2 , t 2 Jump X ¯ 0 , t 1 EM X ¯ 0 , t 1 / 2 Jump ( x )

for i = 1 , , n . Note that we have

E [ | X ¯ t , s EM ( x ) - x | 2 ] = O ( s - t ) and E [ | X ¯ t , s Jump ( x ) - x | 2 ] = O ( s - t ) .

Thus, using (3.1), it holds that there is C 1 ( T ) > 0 independent of n such that

E [ | X ¯ T ( n ) ( x ) | 2 ] C 1 ( T ) .

Also, the estimate of the Malliavin weight:

sup x N E [ | M ( s - t ) x ( B s - B t ) | 2 ] ( 1 + O ( s - t ) )

as in [22] gives

E [ | i = 1 n M s i X ¯ t i - 1 , t i - 1 + s i / 2 Jump X ¯ t i - 1 ( n ) ( x ) ( B t i - B t i - 1 ) | 2 ] C 2 ( T )

for some C 2 ( T ) > 0 independent of n, where (3.1) is again used. Therefore, there exists C ( T ) > 0 independent of n such that

f ( X ¯ T ( n ) ( x ) ) i = 1 n M s i X ¯ t i - 1 , t i - 1 + s i / 2 Jump X ¯ t i - 1 ( n ) ( x ) ( B t i - B t i - 1 ) 2 C ( T ) .

The proof is finished.

B Proof of Lemma 3.1

We first prepare an approximation for the continuous diffusion part using Malliavin calculus and show how the operator Q t Mall . is constructed using polynomials of Brownian motion via Malliavin calculus [11, 13]. It holds that there exists C > 0 such that

(B.1) e t Conti . f - Q t Mall . f C j = 1 3 j f t 3

for all t > 0 and f C b ( N ) .

We decompose the upper bound as follows:

P t f - Q t / 2 Jump Q t Mall . Q t / 2 Jump f
P t f - e 1 2 t Jump e t Conti . e 1 2 t Jump f + e 1 2 t Jump e t Conti . e 1 2 t Jump f - Q t / 2 Jump Q t Mall . Q t / 2 Jump f .

By semigroup expansions, we have for m , f C b ( N ) and x N ,

e t f ( x ) = f ( x ) + i = 1 m t i i ! i f ( x ) + 0 t ( t - s ) m m ! e s m + 1 f ( x ) 𝑑 s ,
e t Jump f ( x ) = f ( x ) + i = 1 m t i i ! ( Jump ) i f ( x ) + 0 t ( t - s ) m m ! e s Jump ( Jump ) m + 1 f ( x ) 𝑑 s ,
e t Conti . f ( x ) = f ( x ) + i = 1 m t i i ! ( Conti . ) i f ( x ) + 0 t ( t - s ) m m ! e s Conti . ( Conti . ) m + 1 f ( x ) 𝑑 s .

We note that

(B.2) sup x | P t f ( x ) - { f ( x ) + t f ( x ) + 1 2 t 2 2 f ( x ) } | C k = 1 6 k f t 3 .

Then we have

e t Conti . e 1 2 t Jump f ( x ) = f ( x ) + 1 2 t Jump f ( x ) + 1 8 t 2 Jump 2 f ( x ) + 0 t 2 ( t 2 - s ) 2 2 e s Jump Jump 3 f ( x ) 𝑑 s
+ t Conti . { f ( x ) + 1 2 t Jump f ( x ) + 0 t 2 ( t 2 - s ) e s Jump Jump 2 f ( x ) 𝑑 s }
+ 1 2 t 2 Conti . 2 { f ( x ) + 0 t 2 e s Jump Jump f ( x ) 𝑑 s }
+ 0 t ( t - s ) 2 2 e s Conti . ( Conti . ) 3 e 1 2 t Jump f ( x ) 𝑑 s
= f ( x ) + 1 2 t Jump f ( x ) + 0 t 2 ( t 2 - s ) e s Jump Jump 2 f ( x ) 𝑑 s
+ t Conti . { f ( x ) + 0 t 2 e s Jump Jump f ( x ) 𝑑 s } + 0 t ( t - s ) e s Conti . ( Conti . ) 2 e 1 2 t Jump f ( x ) 𝑑 s
= f ( x ) + 0 t 2 e s Jump Jump f ( x ) 𝑑 s + 0 t e s Conti . Conti . e 1 2 t Jump f ( x ) 𝑑 s .

Thus, an easy calculation gives

e 1 2 t Jump e t Conti . e 1 2 t Jump f ( x ) = f ( x ) + t f ( x ) + 1 2 t 2 2 f ( x ) + R f ( t , x ) ,

with

R f ( t , x ) = 0 t 2 ( t 2 - s ) 2 2 e s Jump Jump 3 f ( x ) 𝑑 s + t Conti . 0 t 2 ( t 2 - s ) e s Jump Jump 2 f ( x ) 𝑑 s
+ 1 2 t 2 Conti . 2 0 t 2 e s Jump Jump f ( x ) 𝑑 s + 0 t ( t - s ) 2 2 e s Conti . ( Conti . ) 3 e 1 2 t Jump f ( x ) 𝑑 s
+ 1 2 t Jump 0 t 2 ( t 2 - s ) e s Jump Jump 2 f ( x ) 𝑑 s + 1 2 t 2 Jump Conti . 0 t 2 e s Jump Jump f ( x ) 𝑑 s
+ 1 2 t Jump 0 t ( t - s ) e s Conti . ( Conti . ) 2 e 1 2 t Jump f ( x ) 𝑑 s + 1 8 t 2 Jump 2 0 t 2 e s Jump Jump f ( x ) 𝑑 s
+ 1 8 t 2 Jump 2 0 t e s Conti . Conti . e 1 2 t Jump f ( x ) 𝑑 s
+ 0 t 2 ( t 2 - s ) 2 2 e s Jump Jump 3 e t Conti . e 1 2 t Jump f ( x ) 𝑑 s .

Since, by [19, Proposition A.4], we have

Jump f C k = 1 2 k f and Conti . f C k = 1 2 k f ,

it holds that

(B.3) sup x | e 1 2 t Jump e t Conti . e 1 2 t Jump f ( x ) - { f ( x ) + t f ( x ) + 1 2 t 2 2 f ( x ) } | C k = 1 6 k f .

Then, by (B.2) and (B.3), we have

P t f - e 1 2 t Jump e t Conti . e 1 2 t Jump f C k = 1 6 k f .

From

e 1 2 t Jump f f , k e 1 2 t Jump f C = 1 k f ,

and (B.1), we have

e 1 2 t Jump e t Conti . e 1 2 t Jump f - Q t / 2 Jump Q t Mall . Q t / 2 Jump f = e 1 2 t Jump ( e t Conti . - Q t Mall . ) e 1 2 t Jump f
C k = 1 3 k e 1 2 t Jump f t 3
C k = 1 3 k f t 3 .

Therefore, we obtain that

P t f - Q t / 2 Jump Q t Mall . Q t / 2 Jump f C j = 1 6 j f t 3 .

The proof is finished.

C Proof of Lemma 3.2

The bound of

P t f - Q t / 2 Jump Q t Mall . Q t / 2 Jump f

is decomposed as

P t f - Q t / 2 Jump Q t Mall . Q t / 2 Jump f P t f - f + Q t / 2 Jump Q t Mall . Q t / 2 Jump f - f .

We immediately have

(C.1) P t f - f C C Lip [ f ] t 1 / 2 .

The bound of

Q t / 2 Jump Q t Mall . Q t / 2 Jump f - f

is split into

Q t / 2 Jump Q t Mall . Q t / 2 Jump f - f
Q t / 2 Jump Q t Mall . Q t / 2 Jump f - Q t Mall . Q t / 2 Jump f + Q t Mall . Q t / 2 Jump f - Q t / 2 Jump f + Q t / 2 Jump f - f .

First, we have

(C.2) Q s Jump f - f C Lip [ f ] E [ | X s d + 1 - x | ] C Lip [ f ] X s d + 1 - x 2 C C Lip [ f ] s 1 / 2

by [19, Corollary A.7]. Next we give the bound of Q t Mall . Q t / 2 Jump f - Q t / 2 Jump f . We note that, for g C b 1 ( N ) , Q t Mall . g ( x ) - g ( x ) can be expressed by

E [ g ( X ¯ t EM ( x ) ) M t x ( B t ) ] - g ( x ) = E [ g ( X ¯ t EM ( x ) ) M t x ( B t ) - g ( x ) M t x ( B t ) ]
= E [ { g ( X ¯ t EM ( x ) ) - g ( x ) } M t x ( B t ) ] ,

which gives

| E [ Q t / 2 Jump f ( X ¯ t EM ( x ) ) M t x ( B t ) ] - Q t / 2 Jump f ( x ) | = Q t / 2 Jump f ( X ¯ t EM ( x ) ) - Q t / 2 Jump f ( x ) 2 M t x ( B t ) 2 .

Since

Q t / 2 Jump f ( X ¯ t EM ( x ) ) - Q t / 2 Jump f ( x ) 2 = E [ | Q t / 2 Jump f ( X ¯ t EM ( x ) ) - Q t / 2 Jump f ( x ) | 2 ] 1 / 2
C Lip [ Q t / 2 Jump f ] t 1 / 2 ,
M t x ( B t ) 2 1 + C t ,

with

C Lip [ Q t Jump f ] = Q t Jump f C C Lip [ f ] ,

we have

(C.3) Q t Mall . Q t / 2 Jump f - Q t / 2 Jump f C C Lip [ f ] t 1 / 2 .

Finally, we check the bound

Q t / 2 Jump Q t Mall . Q t / 2 Jump f - Q t Mall . Q t / 2 Jump f .

By (C.2), we have

Q t / 2 Jump Q t Mall . Q t / 2 Jump f - Q t Mall . Q t / 2 Jump f C C Lip [ Q t Mall . Q t / 2 Jump f ] t 1 / 2 .

We need the bound

C Lip [ Q t Mall . g ] = Q t Mall . g for  g C b 1 ( N ) .

Hereafter, we use notation of the Malliavin integration by parts in [13, (2.31)] and the Skorohod integral of Brownian motion as in [22, Definition 3.6], i.e. 𝔹 t Skor , α = δ α p ( δ α 2 ( B t α 1 ) ) for α { 0 , 1 , , d } p , where δ k is the Skorohod integral operator given by

δ k ( F h ) = F 0 t h ( s ) 𝑑 B s k - 0 t D s k F h ( s ) 𝑑 s

with k-th Malliavin derivative D k for k = 1 , , d , δ 0 ( F h ) = F 0 t h ( s ) 𝑑 s and B t 0 = t .

Note that Q t Mall . g has the form

Q t Mall . g ( x ) = E [ g ( X ¯ t EM ( x ) ) ] + i α E [ i g ( X ¯ t EM ( x ) ) L α 1 V α 2 i ( x ) 1 2 𝔹 t Skor , α ]
+ i 1 , i 2 = 1 N α E [ i 1 i 2 g ( X ¯ t EM ( x ) ) [ J ¯ t x ] j L α 1 V α 2 i 1 ( x ) L α 1 V α 2 i 2 ( x ) 1 2 t 2 ] .

Then

x j Q t Mall . g ( x ) = = 1 N E [ g ( X ¯ t EM ( x ) ) [ J ¯ t x ] j ] + = 1 N i α E [ i g ( X ¯ t EM ( x ) ) [ J ¯ t x ] j L α 1 V α 2 i ( x ) 1 2 𝔹 t Skor , α ]
+ i α E [ i g ( X ¯ t EM ( x ) ) j L α 1 V α 2 i ( x ) 1 2 𝔹 t Skor , α ]
+ = 1 N i 1 , i 2 = 1 N α E [ i 1 i 2 g ( X ¯ t EM ( x ) ) [ J ¯ t x ] j L α 1 V α 2 i 1 ( x ) L α 1 V α 2 i 2 ( x ) 1 2 t 2 ]
+ i 1 , i 2 = 1 N α E [ i 1 i 2 g ( X ¯ t EM ( x ) ) j ( L α 1 V α 2 i 1 ( x ) L α 1 V α 2 i 2 ( x ) ) 1 2 t 2 ]
= = 1 N E [ g ( X ¯ t EM ( x ) ) [ J ¯ t x ] j ] + = 1 N i α E [ i f ( X ¯ t EM ( x ) ) H ( ) ( X ¯ t EM ( x ) , [ J ¯ t x ] j L α 1 V α 2 i ( x ) 1 2 𝔹 t Skor , α ) ]
+ i α E [ i g ( X ¯ t EM ( x ) ) j L α 1 V α 2 i ( x ) 1 2 𝔹 t Skor , α ]
+ = 1 N i 1 , i 2 = 1 N α E [ i 2 g ( X ¯ t EM ( x ) ) H ( , i 1 ) ( X ¯ t EM ( x ) , [ J ¯ t x ] j L α 1 V α 2 i 1 ( x ) L α 1 V α 2 i 2 ( x ) 1 2 t 2 ) ]
+ i 1 , i 2 = 1 N α E [ i 1 g ( X ¯ t EM ( x ) ) H ( i 1 ) ( X ¯ t EM ( x ) , j ( L α 1 V α 2 i 1 ( x ) L α 1 V α 2 i 2 ( x ) ) 1 2 t 2 ) ] .

Therefore, we have

C Lip [ Q t Mall . f ] = Q t Mall . f C C Lip [ f ]

and

Q t / 2 Jump Q t Mall . Q t / 2 Jump f - Q t Mall . Q t / 2 Jump f C C Lip [ Q t Mall . Q t / 2 Jump f ] t 1 / 2
C C Lip [ Q t / 2 Jump f ] t 1 / 2
(C.4) C ′′ C Lip [ f ] t 1 / 2 .

By (C.1) and (C.2)–(C.4), we obtain

P t f - Q t / 2 Jump Q t Mall . Q t / 2 Jump f P t f - f + Q t / 2 Jump Q t Mall . Q t / 2 Jump f - f
C C Lip [ f ] t 1 / 2 .

The proof is finished.

D Proof of Lemma 3.3

We prove k = 1 , 2 . Let { f n } n be smooth functions satisfying f n f uniformly as n and f n C Lip [ f ] for all n . Using the formulas in [3, Theorems 2 and 3] and the proof of [4, Theorem 2.3] on Bismut’s representation [2], we have

x E [ f n ( X T - t x ) ] = E [ ( f n ) ( X T - t x ) x X T - t x ] ,
P T - t f C C Lip [ f ] ,
2 x 2 E [ f n ( X T - t x ) ] = 1 T - t E [ ( f n ) ( X T - t x ) x X T - t x 0 T - t ( V - 1 ( X s - ( x ) ) x X s - ( x ) ) 𝑑 B s ]
- 1 T - t E [ 0 T - t ( P T - t - s f n ) ( X s - ( x ) ) ( V ( X s - ( x ) ) x X s - ( x ) V - 1 ( X s - ( x ) ) x X s - ( x ) ) 𝑑 s ]
+ 1 T - t E [ 0 T - t ( P T - t - s f n ) ( X s - ( x ) ) 2 x 2 X s - ( x ) 𝑑 s ] ,
2 P T - t f C C Lip [ f ] = 1 2 1 ( T - t ) ( - 1 ) / 2 .

Iterating a similar procedure with an integration by parts argument for k 2 , we obtain the assertion.

The proof is finished.

Acknowledgements

We appreciate the comments and suggestions from the referee and the editor.

References

[1] N. Akiyama and T. Yamada, A weak approximation method for irregular functionals of hypoelliptic diffusions, Appl. Numer. Math. 172 (2022), 27–49. 10.1016/j.apnum.2021.09.020Search in Google Scholar

[2] J.-M. Bismut, Large Deviations and the Malliavin Calculus, Progr. Math. 45, Birkhäuser, Boston, 1984. Search in Google Scholar

[3] T. Cass and P. Friz, The Bismut–Elworthy–Li formula for jump-diffusions and applications to Monte Carlo methods in finance, preprint (2007), https://arxiv.org/abs/math/0604311. Search in Google Scholar

[4] K. D. Elworthy and X.-M. Li, Formulae for the derivatives of heat semigroups, J. Funct. Anal. 125 (1994), no. 1, 252–286. 10.1006/jfan.1994.1124Search in Google Scholar

[5] Y. Iguchi, R. Naito, Y. Okano, A. Takahashi and T. Yamada, Deep asymptotic expansion: Application to financial mathematics, Proceedings of IEEE CSDE 2021, to appear. 10.1109/CSDE53843.2021.9718463Search in Google Scholar

[6] Y. Iguchi and T. Yamada, Operator splitting around Euler–Maruyama scheme and high order discretization of heat kernels, ESAIM Math. Model. Numer. Anal. 55 (2021), S323–S367. 10.1051/m2an/2020043Search in Google Scholar

[7] J. Jacod and P. Protter, Asymptotic error distributions for the Euler method for stochastic differential equations, Ann. Probab. 26 (1998), no. 1, 267–307. 10.1214/aop/1022855419Search in Google Scholar

[8] P. E. Kloeden and E. Platen, Numerical Solution of Stochastic Differential Equations, Appl. Math. (New York) 23, Springer, Berlin, 1992. 10.1007/978-3-662-12616-5Search in Google Scholar

[9] S. Kusuoka, Approximation of expectation of diffusion process and mathematical finance, Taniguchi Conference on Mathematics Nara ’98, Adv. Stud. Pure Math. 31, Mathematical Society of Japan, Tokyo (2001), 147–165. 10.2969/aspm/03110147Search in Google Scholar

[10] S. Kusuoka, Approximation of expectation of diffusion processes based on Lie algebra and Malliavin calculus, Advances in Mathematical Economics. Vol. 6, Adv. Math. Econ. 6, Springer, Tokyo (2004), 69–83. 10.1007/978-4-431-68450-3_4Search in Google Scholar

[11] P. Malliavin and A. Thalmaier, Stochastic Calculus of Variations in Mathematical Finance, Springer, Berlin, 2006. Search in Google Scholar

[12] R. Naito and T. Yamada, A third-order weak approximation of multidimensional Itô stochastic differential equations, Monte Carlo Methods Appl. 25 (2019), no. 2, 97–120. 10.1515/mcma-2019-2036Search in Google Scholar

[13] D. Nualart, The Malliavin Calculus and Related Topics, Springer, Berlin, 2006. Search in Google Scholar

[14] Y. Okano and T. Yamada, A control variate method for weak approximation of SDEs via discretization of numerical error of asymptotic expansion, Monte Carlo Methods Appl. 25 (2019), no. 3, 239–252. 10.1515/mcma-2019-2044Search in Google Scholar

[15] E. Platen and N. Bruti-Liberati, Numerical Solution of Stochastic Differential Equations with Jumps in Finance, Springer, Berlin, 2010. 10.1007/978-3-642-13694-8Search in Google Scholar

[16] A. Takahashi and T. Yamada, An asymptotic expansion with push-down of Malliavin weights, SIAM J. Financial Math. 3 (2012), no. 1, 95–136. 10.1137/100807624Search in Google Scholar

[17] A. Takahashi and T. Yamada, On error estimates for asymptotic expansions with Malliavin weights: Application to stochastic volatility model, Math. Oper. Res. 40 (2015), no. 3, 513–541. 10.1287/moor.2014.0683Search in Google Scholar

[18] A. Takahashi and T. Yamada, A weak approximation with asymptotic expansion and multidimensional Malliavin weights, Ann. Appl. Probab. 26 (2016), no. 2, 818–856. 10.1214/15-AAP1105Search in Google Scholar

[19] H. Tanaka and A. Kohatsu-Higa, An operator approach for Markov chain weak approximations with an application to infinite activity Lévy driven SDEs, Ann. Appl. Probab. 19 (2009), no. 3, 1026–1062. 10.1214/08-AAP568Search in Google Scholar

[20] H. Tanaka and T. Yamada, Strong convergence for Euler–Maruyama and Milstein schemes with asymptotic method, Int. J. Theor. Appl. Finance 17 (2014), no. 2, Article ID 1450014. 10.1142/S0219024914500149Search in Google Scholar

[21] T. Yamada, An arbitrary high order weak approximation of SDE and Malliavin Monte Carlo: Analysis of probability distribution functions, SIAM J. Numer. Anal. 57 (2019), no. 2, 563–591. 10.1137/17M114412XSearch in Google Scholar

[22] T. Yamada, High order weak approximation for irregular functionals of time-inhomogeneous SDEs, Monte Carlo Methods Appl. 27 (2021), no. 2, 117–136. 10.1515/mcma-2021-2085Search in Google Scholar

Received: 2021-07-08
Revised: 2022-01-28
Accepted: 2022-02-01
Published Online: 2022-02-26
Published in Print: 2022-06-01

© 2022 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 25.4.2024 from https://www.degruyter.com/document/doi/10.1515/mcma-2022-2109/html
Scroll to top button