Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter April 15, 2020

Unbiased estimation of the solution to Zakai’s equation

  • Hamza M. Ruzayqat EMAIL logo and Ajay Jasra

Abstract

In the following article, we consider the non-linear filtering problem in continuous time and in particular the solution to Zakai’s equation or the normalizing constant. We develop a methodology to produce finite variance, almost surely unbiased estimators of the solution to Zakai’s equation. That is, given access to only a first-order discretization of solution to the Zakai equation, we present a method which can remove this discretization bias. The approach, under assumptions, is proved to have finite variance and is numerically compared to using a particular multilevel Monte Carlo method.

Award Identifier / Grant number: BAS/1/1681-01-01

Funding statement: Both authors were supported by KAUST baseline funding.

A Proofs

In order to understand the proofs/results in the main text, this appendix can be read linearly.

Some operators are now defined. Let (l,p,n)03, n>p, (up,φ)El×b(El),

𝐐p,nl(φ)(up):=φ(un)(q=pn-1𝐆ql(uq))q=p+1nMl(uq-1,duq),

where we set up=(xp,xp+Δl,,xp+1) and we use the convention 𝐐p,pl(φ)(up)=φ(up). For (p,l)×, define the operator Φpl:𝒫(El)𝒫(El) with (μ,φ)𝒫(El)×b(El) as

Φpl(μ)(φ):=μ(𝐆p-1l𝐌l(φ))μ(𝐆p-1l),

where, to clarify,

μ(𝐆p-1l𝐌l(φ))=Elμ(d(xp-1,xp-1+Δl,,xp))𝐆p-1l(xp-1,xp-1+Δl,,xp-Δl)Ml(φ)(xp).

Now, we write the empirical measure of samples that are generated at level l (resp. l-1) by Algorithm 4 at the end of step (1) or step (2) for (t,l,N)0×2 as

πtl,N(du):=1Ni=1Nδ{xt:t+1l,i}(du)resp.πˇtl-1,N(du):=1Ni=1Nδ{xˇt:t+1l-1,i}(du).

If one just considers a particle filter, as in Algorithm 1, we use the notation πtl,N, (t,l,N)02× to denote the empirical measure of the samples produced either at the end of step (1) or step (2). For φb(dx), we define, for any l0, 𝝋l:El, 𝝋l(x0,xΔl,,x1):=φ(x1). Given the above notation, we have the following martingale (we will define the filtration below) decomposition from [4, Theorem 7.4.2] for (t,l,N,φ)×0××b(dx):

(A.1)[γt,PFl,N-γtl](φ)=p=0t-1γp,PFl,N(1)[πpl,N-Φpl(πp-1l,N)](𝐐p,t-1l(𝐆t-1l𝝋l)),

where we use the convention Φ0l(π-1l,N)()=Ml(x*,). Let 𝒢tl be the σ-algebra generated by the particle filter at level l0 up to time t0 (after step (1) or step (2) of Algorithm 1, time 0 corresponds to the end of step (1)), and set sl=𝒢sl𝒴t for s0, with -1l=𝒴t and t fixed.

In addition, one has, for (t,l,N,φ)3×b(dx),

(A.2)[γtl-γtl-1]CPFN(φ)-[γtl-γtl-1](φ)=p=0t-1{γp,CPFl,N(1)[πpl,N-Φpl(πp-1l,N)](𝐐p,t-1l(𝐆t-1l𝝋l))-γˇp,CPFl-1,N(1)[πˇpl-1,N-Φpl-1(πˇp-1l-1,N)](𝐐p,t-1l-1(𝐆t-1l-1𝝋l-1))},

where we use the convention Φ0l-1(πˇ-1l-1,N()=Ml-1(x*,) and we use the notation

γp,CPFl,N(1)=q=0p-1πql,N(𝐆ql),γˇp,CPFl-1,N(1)=q=0p-1πˇql-1,N(𝐆ql-1).

Let 𝒢ˇtl be the σ-algebra generated by the coupled particle filter at level l up to time t0 (after step (1) or step (2) of Algorithm 4, time 0 corresponds to the end of step (1)), and set ˇsl=𝒢ˇsl𝒴t for s0, with ˇ-1l=𝒴t and t fixed.

Proof of Proposition 2.1.

Almost surely, for any (t,l,N,φ)×0××b(dx) and s{-1,,t-2}, we have

𝔼¯[[γt,PFl,N-γtl](φ)|sl]=p=0sγp,PFl,N(1)[πpl,N-Φpl(πp-1l,N)](𝐐p,t-1l(𝐆t-1l𝝋l))

and hence

𝔼¯[[γt,PFl,N-γtl](φ)|-1l]=𝔼¯[[γt,PFl,N-γtl](φ)|𝒴t]=0.

In an almost identical argument, for any (t,l,N,φ)×××b(dx), almost surely,

𝔼¯[[γtl-γtl-1]CPFN(φ)-[γtl-γtl-1](φ)|ˇ-1l]=𝔼¯[[γtl-γtl-1]CPFN(φ)-[γtl-γtl-1](φ)|𝒴t]=0,

which allows one to conclude the result. ∎

Proposition A.1.

Assume (D1). Then, for any (t,q)N×N, there exists a C<+ such that, for any

(l,N,φ)2×b(dx)Lip2(dx),

we have

𝔼¯[|[γtl-γtl-1]CPFN(φ)-[γtl-γtl-1](φ)|q]1/qC(φ+φLip)Δl1/4N.

Proof.

Throughout, C is a finite constant whose value may change on appearance and does not depend upon l nor N. Our proof is by strong induction on t. Consider the case t=1; then, using (A.2),

𝔼¯[|[γ1l-γ1l-1]CPFN(φ)-[γ1l-γ1l-1](φ)|q]1/q
=𝔼¯[|π0l,N(𝐆0l𝝋l)-Ml(𝐆0l𝝋l)(x*)-πˇ0l-1,N(𝐆0l-1𝝋l-1)+Ml-1(𝐆0l-1𝝋l-1)(x*)|q]1/q.

Applying the Marcinkiewicz–Zygmund and Jensen inequalities, one can deduce that

𝔼¯[|[γ1l-γ1l-1]CPFN(φ)-[γ1l-γ1l-1](φ)|q]1/qC1N𝔼¯[|𝐆0l(U0l,i)φ(X1l,i)-𝐆0l(Uˇ0l-1,i)φ(Xˇ1l-1,i)|q]1/q.

By [14, Lemma A.8], one can deduce that

𝔼¯[|[γ1l-γ1l-1]CPFN(φ)-[γ1l-γ1l-1](φ)|q]1/qC(φ+φLip)Δl1/2N,

and hence the initialization follows.

We now assume the result at ranks 1,,t-1 and consider t. We have, almost surely, that (via (A.2))

(A.3)[γtl-γtl-1]CPFN(φ)-[γtl-γtl-1](φ)=j=13Tj,

where

T1=p=0t-1[[γpl-γpl-1]CPFN(1)-[γpl-γpl-1](1)][πpl,N-Φpl(πp-1l,N)](𝐐p,t-1l(𝐆t-1l𝝋l)),
T2=p=0t-1[γpl-γpl-1](1)[πpl,N-Φpl(πp-1l,N)](𝐐p,t-1l(𝐆t-1l𝝋l)),
T3=p=0t-1γˇp,CPFl-1,N(1)[[πpl,N-Φpl(πp-1l,N)](𝐐p,t-1l(𝐆t-1l𝝋l))-[πˇpl-1,N-Φpl-1(πˇp-1l-1,N)](𝐐p,t-1l-1(𝐆t-1l-1𝝋l-1))].

By using Minkowski’s inequality, we can upper-bound the 𝕃q-norms of T1-T3 independently. For T1, again applying the Minkowski inequality t times, one has

𝔼¯[|T1|q]1/qp=0t-1𝔼¯[|[[γpl-γpl-1]CPFN(1)-[γpl-γpl-1](1)][πpl,N-Φpl(πp-1l,N)](𝐐p,t-1l(𝐆t-1l𝝋l))|q]1/q.

Applying Cauchy–Schwarz and the induction hypothesis along with [14, Lemma A.10] yields

(A.4)𝔼¯[|T1|q]1/qC(φ+φLip)Δl1/4N.

For T2, applying the Minkowski inequality t times and the Cauchy–Schwarz inequality,

𝔼¯[|T2|q]1/qp=0t-1{𝔼¯[|[γpl-γpl-1](1)|2q]1/(2q)𝔼¯[|[πpl,N-Φpl(πp-1l,N)](𝐐p,t-1l(𝐆t-1l𝝋l))|2q]1/(2q)}.

For the left expectation, one can apply Lemma A.1 (1) and for the right the (conditional) Marcinkiewicz–Zygmund and Jensen inequalities along with [14, Lemma A.10] to give

(A.5)𝔼¯[|T2|q]1/qC(φ+φLip)Δl1/2N.

For T3, using a similar strategy as for T1 and T2, one has the upper bound

𝔼¯[|T3|q]1/qp=0t-1𝔼¯[γˇp,CPFl-1,N(1)2q]1/(2q)𝔼¯[|[πpl,N-Φpl(πp-1l,N)](𝐐p,t-1l(𝐆t-1l𝝋l))-[πˇpl-1,N-Φpl-1(πˇp-1l-1,N)](𝐐p,t-1l-1(𝐆t-1l-1𝝋l-1))|2q]1/(2q).

For the left expectation, one can use the bound [14, (14)] and then take expectations w.r.t. the data to yield that 𝔼¯[γˇp,CPFl-1,N(1)2q]1/(2q)C, where C does not depend upon l. For the right expectation, one can use the (conditional) Marcinkiewicz–Zygmund and Jensen inequalities to deduce that

𝔼¯[|T3|q]1/qCNp=0t-1𝔼¯[|𝐐p,t-1l(𝐆t-1l𝝋l)(Upl,1)-𝐐p,t-1l-1(𝐆t-1l-1𝝋l-1)(Uˇpl-1,1)|2q]1/(2q).

The expectation in the summand can be controlled by using a very similar approach to [12, proof of Lemma A.4] to yield

(A.6)𝔼¯[|T3|q]1/qC(φ+φLip)Δl1/4N.

Noting (A.3) along with (A.4)–(A.6), the proof can be easily concluded. ∎

Remark A.1.

It straightforward to deduce that, using representation (A.1) and the strategy used in the proof above, one can prove the following under (D1). For any (t,q)×, there exists a C<+ such that, for any (l,φ)0×b(dx)Lip2(dx),

𝔼¯[|[γt,PFl,N-γtl](φ)|q]1/qC(φ+φLip)1N.

Lemma A.1.

Assume (D1). Then, for any (t,q)N×N, there exists a C<+ such that,

  1. for any (l,φ)×b(dx)Lip2(dx), we have 𝔼¯[|[γtl-γtl-1](φ)|q]1/qC(φ+φLip)Δl1/2,

  2. for any (l,φ)0×b(dx)Lip2(dx), we have 𝔼¯[|[γtl-γt](φ)|q]1/qC(φ+φLip)Δl1/2.

Proof.

The first result is [14, Lemma A.8] and the second is [14, Lemma A.5]. ∎

References

[1] A. Bain and D. Crisan, Fundamentals of Stochastic Filtering, Stoch. Model. Appl. Probab. 60, Springer, New York, 2009. 10.1007/978-0-387-76896-0Search in Google Scholar

[2] D. Crisan and S. Ortiz-Latorre, A Kusuoka–Lyons–Victoir particle filter, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 469 (2013), no. 2156, Article ID 20130076. 10.1098/rspa.2013.0076Search in Google Scholar

[3] D. Crisan and S. Ortiz-Latorre, A high order time discretization of the solution of the non-linear filtering problem, preprint (2019), https://arxiv.org/abs/1711.08012v1. 10.1007/s40072-019-00157-3Search in Google Scholar

[4] P. Del Moral, Feynman–Kac Formulae. Genealogical and Interacting Particle Systems with Applications, Probab. Appl. (N. Y.), Springer, New York, 2004. 10.1007/978-1-4684-9393-1Search in Google Scholar

[5] P. Del Moral, Mean field simulation for Monte Carlo integration, Monogr. Statist. Appl. Probab. 126, CRC Press, Boca Raton, 2013. 10.1201/b14924Search in Google Scholar

[6] P. Del Moral, A. Doucet and A. Jasra, On adaptive resampling strategies for sequential Monte Carlo methods, Bernoulli 18 (2012), no. 1, 252–278. 10.3150/10-BEJ335Search in Google Scholar

[7] P. Fearnhead, O. Papaspiliopoulos, G. O. Roberts and A. Stuart, Random-weight particle filtering of continuous time processes, J. R. Stat. Soc. Ser. B Stat. Methodol. 72 (2010), no. 4, 497–512. 10.1111/j.1467-9868.2010.00744.xSearch in Google Scholar

[8] M. B. Giles, Multilevel Monte Carlo path simulation, Oper. Res. 56 (2008), no. 3, 607–617. 10.1287/opre.1070.0496Search in Google Scholar

[9] M. B. Giles, Multilevel Monte Carlo methods, Acta Numer. 24 (2015), 259–328. 10.1007/978-3-642-41095-6_4Search in Google Scholar

[10] S. Heinrich, Multilevel Monte Carlo methods, Large-Scale Scientific Computing—LSSC 2001, Lecture Notes in Comput. Sci. 2179, Springer, Berlin (2001), 58–67. 10.1007/3-540-45346-6_5Search in Google Scholar

[11] A. Jasra, K. Kamatani, P. P. Osei and Y. Zhou, Multilevel particle filters: Normalizing constant estimation, Stat. Comput. 28 (2018), no. 1, 47–60. 10.1007/s11222-016-9715-5Search in Google Scholar

[12] A. Jasra, K. J. H. Law and C. Suciu, Advanced multilevel Monte Carlo methods, preprint (2017), https://arxiv.org/abs/1704.07272. 10.1111/insr.12365Search in Google Scholar

[13] A. Jasra and F. Yu, Central limit theorems for coupled particle filters, preprint (2018), https://arxiv.org/abs/1810.04900. 10.1017/apr.2020.27Search in Google Scholar

[14] A. Jasra, F. Yu and J. Heng, Multilevel particle filters for the non-linear filtering problem in continuous time, preprint (2019), https://arxiv.org/abs/1907.06328. 10.1007/s11222-020-09951-9Search in Google Scholar

[15] D. McLeish, A general method for debiasing a Monte Carlo estimator, Monte Carlo Methods Appl. 17 (2011), no. 4, 301–315. 10.1515/mcma.2011.013Search in Google Scholar

[16] J. Picard, Approximation of nonlinear filtering problems and order of convergence, Filtering and Control of Random Processes (Paris 1983), Lect. Notes Control Inf. Sci. 61, Springer, Berlin (1984), 219–236. 10.1007/BFb0006572Search in Google Scholar

[17] C.-H. Rhee and P. W. Glynn, Unbiased estimation with square root convergence for SDE models, Oper. Res. 63 (2015), no. 5, 1026–1043. 10.1287/opre.2015.1404Search in Google Scholar

[18] M. Vihola, Unbiased estimators and multilevel Monte Carlo, Oper. Res. 66 (2018), no. 2, 448–462. 10.1287/opre.2017.1670Search in Google Scholar

Received: 2020-02-20
Accepted: 2020-03-26
Published Online: 2020-04-15
Published in Print: 2020-06-01

© 2020 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 20.4.2024 from https://www.degruyter.com/document/doi/10.1515/mcma-2020-2061/html
Scroll to top button