Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter December 13, 2014

Characterization and selection of microhabitat of Microcavia australis (Rodentia: Caviidae): first data in a rocky habitat in the hyperarid Monte Desert of Argentina

  • Natalia Andino EMAIL logo , Carlos E. Borghi and Stella M. Giannoni
From the journal Mammalia

Abstract

A rocky habitat, in its broadest sense, may be described as any locality that contains boulders, rocks, scree, pebbles, outcrops, cliffs, or caves. In these habitats, mammals find shelter sites that they use as nesting sites or dens to raise their young in a stable microclimate that is relatively secure from predators. The aim of this study was to characterize and evaluate the microhabitat selection by the southern mountain cavy (Microcavia australis Geoffroy and d’Orbigny) in a rocky habitat. This rodent selected the highest and deepest crevices, which provided them with a more stable microenvironment than outside. The present study is the first to report a southern mountain cavy population associated with a rocky habitat, suggesting a strong plasticity to inhabit a variety of habitats, as indicated by its wide distribution.


Dedicated to: This article is dedicated to the memory of our deceased colleague Verónica Lahoz.



Corresponding author: Natalia Andino, Interacciones Biológicas del Desierto (INTERBIODES), Instituto y Museo de Ciencias Naturales, Facultad de Ciencias Exactas, Físicas y Naturales, Universidad Nacional de San Juan, Av. Ignacio de la Roza 590 (Oeste), J5402DCS, Rivadavia, San Juan, Argentina, e-mail: ; and Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Av. Rivadavia 1917.CABA, Argentina

Acknowledgments

We are indebted to the staff from the “Termas de La Laja” for providing all the necessary facilities during field work. Andino N. received a research grant from the National Council for Science and Technology (CONICET), S.M. Giannoni and Borghi C.E are CONICET researchers. We acknowledge and are grateful for the help received from all the members of INTERBIODES and for the data base provided by INTA San Juan. Jorgelina Brasca assisted us with the English editing. This work is dedicated to the memory of Verónica Lahoz, our recently deceased colleague. We want to sincerely thank her for her participation in the data collection and for her comments and suggestions on a first draft of our manuscript.

References

Altuna, C.A. 1985. Microclima de cuevas de Ctenomys pearsoni (Rodentia, Octodontidae) en arroyo carrasco (Montevideo). Actas J. Zool. Uruguay 1: 59–60.Search in Google Scholar

Andino, N., L. Reus, F. Cappa, V. Campos and S.M. Giannoni. 2011. Social environment and agonistic interactions: strategies in a small social mammal. Ethology 117: 992–1002.10.1111/j.1439-0310.2011.01956.xSearch in Google Scholar

Arends A. and B.K. McNab. 2001. The comparative energetics of “Caviomorph” rodents. Comp. Biochem. Phys. A 130: 105–122.10.1016/S1095-6433(01)00371-3Search in Google Scholar

Armitage, K.B. 1988. Resources and social organization of ground-dwelling squirrels. In: (C.N. Slobodchikoff, ed.) The ecology of social behavior. Academic Press, Inc. Horcourt Brace Jovanovich, Publishers, San Diego, California. pp. 131–155.Search in Google Scholar

Beck, C.W. and B.D. Watts. 1997. The effect of cover and food on space use by wintering song sparrows and field sparrows. Can. J. Zool. 75: 1636–1641.10.1139/z97-790Search in Google Scholar

Brashares, J.S. and P. Arcese. 2002. Role of forage, habitat and predation in the behavioural plasticity of a small African antelope. J. Anim. Ecol. 71: 626–638.Search in Google Scholar

Branch, L.C., D. Villarreal, A. Sosa, M. Pessino, M. Machicote, P. Lerner, P. Borraz, M. Urioste and J.L. Hierro. 1994. Estructura de las colonias de vizcacha y problemas asociados con la estimación de densidad poblacional en base a la actividad de las vizcacheras. Argentina. Mastozool. Neotrop. 1: 135–142.Search in Google Scholar

Bronikowski, A.M. and J. Altmann. 1996. Foraging in a variable environment: weather patterns and the behavioral ecology of baboons. Behav. Ecol. Sociobiol. 39: 11–25.10.1007/s002650050262Search in Google Scholar

Burnham, K.P. and D.R. Anderson. 2002. Model selection and multimodel inference: a practical information – theoretic approach. Springer-Verlag, New York.Search in Google Scholar

Burda, H., R. Šumbera and S. Begall. 2007. Microclimate in burrows of subterranean rodents – revisited. In: (S. Begall, H. Burda and C.E. Schleich, eds.). Subterranean rodents: news from underground. Springer-Verlag, Berlin Heidelberg. pp. 21–33.Search in Google Scholar

Cabrera, A.L. 1994. Regiones fitogeográficas argentinas. Enciclopedia Argentina de Agricultura y Jardinería, Tomo II, Fascículo 1. ACME, Buenos Aires. pp. 85.Search in Google Scholar

Calede, J.M., S.B. Hopkins and E. Davis. 2011. Turnover in burrowing rodents: the roles of competition and habitat change. Palaeogeogr. Palaeocl. (3): 242–255.10.1016/j.palaeo.2011.09.002Search in Google Scholar

Calhoud, P. 2013. “Exact” package version 1.4: unconditional exact test. R package version 3.0.3, URL.Search in Google Scholar

Campos, C.M. 1997.Utilization of food resources by small and medium sized mammals of Monte desert, Argentina. Mastozool. Neotrop. 4(2): 155–156.Search in Google Scholar

Campos, C., C. Borghi, S. Giannoni, A. Mangeaud and M. Tognelli. 2006. Bark consumption of creosote bush (Larrea cuneifolia) by cuises (Microcavia australis): effect on branch survival and reproduction. Ecol. Aust. 16: 1–6.Search in Google Scholar

Campos, V.E., Andino, N., Cappa F.M.; Reus, M.L. and S. Giannoni. 2013. Microhabitat selection by Octomysmimax (Rodentia: Octodontidae) in the Monte Desert is affected by attributes and thermal properties of crevices. Revista Chilena de Historia Natural 86: 315–324.10.4067/S0716-078X2013000300008Search in Google Scholar

Chapman, J. and J. Flux. 1991. Rabbits, hares and pikas: status survey and conservation action plan. World Conservation Union, United Kingdom.Search in Google Scholar

Contreras, J.R. and V.G. Roig. 1978. Observaciones sobre la organización social, la ecología y la estructura de los habitáculos de Microcavia australis en Ñacuñán, Provincia de Mendoza. Ecosur 5: 191–199.Search in Google Scholar

Contreras, L.C. and B.K. McNab. 1990. Thermoregulation and energetics in subterranean mammals. In: (E. Nevo and O.A. Reig, eds.) Evolution of subterranean mammals at the organismal and molecular levels. Wiley-Liss, New York. pp. 231–250.Search in Google Scholar

Contreras, V.H., S. Pontoriero, A. Perez and P. Perucca. 1999. Consideraciones sobre la génesis, fauna y edad de los travertinos de la laja, Albardón, San Juan. CD Síntesis del cuaternario de la Provincia de San Juan. XI Reunión de Campo del Cuaternario. Revista digital Ciencias. San Juan. FCEFyN.UNSJ.Search in Google Scholar

Covich, A.P. 1976. Analyzing shapes of foraging areas: some ecological economic theories. Annu. Rev. Ecol. Syst. 7: 235–257.10.1146/annurev.es.07.110176.001315Search in Google Scholar

Ebensperger, L.A. 2001. A review of the evolutionary causes of rodent group-living. Acta Theriol. 46: 155.144.10.4098/AT.arch.01-16Search in Google Scholar

Ebensperger, L.A. and F. Bozinovic. 2000. Energetics and burrowing behavior in the semifossorial degu Octodon degus (Rodentia: Octodontidae). J. Zool. 252: 179–186.10.1111/j.1469-7998.2000.tb00613.xSearch in Google Scholar

Ebensperger, L.A., P. Taraborelli, S. Giannoni, M.J. Hurtado, C. León and F. Bozinovic. 2006. Nest and space use in highland population of the lesser cavy, Microcavia australis. J. Mammal. 87: 834–840.Search in Google Scholar

Ghobrial, L. and T.A. Nour. 1975. The physiological adaptations of desert rodents. In: (I. Prakash I and P.K. Ghosh, eds.) Rodents in desert environments: Monographiae Biologicae. The Hague, Netherlands. pp. 413–444.Search in Google Scholar

Gutiérrez Elorza, M. and J. Rodriguez Vidal. 1984. Fenómenos de sufosión (piping) en la depresión media del Ebro. Cuadernos de Investigación Geográfica (Logroño) 10:75–83.10.18172/cig.926Search in Google Scholar

Hall, L.S. and K. Myers. 1978. Variations in the microclimate in rabbit warrens in semi-arid New South Wales. Aust. J. Ecol 3: 187–194.10.1111/j.1442-9993.1978.tb01169.xSearch in Google Scholar

Harrel, F. 2014. Rms package versión 4.2-0: regression modeling strategies. R package version 3.0.3, URL. http://biostat.mc.vanderbilt.edu/rms.Search in Google Scholar

Hickman, G.C. 1977. Burrow system structure of Pappogeomyscastanops (Geomyidae) in Lubbock Country, Texas. Am. Midl. Nat 97: 50–58.Search in Google Scholar

Hoeck, H.N. 1982. Population dynamics, dispersal and genetic isolation in two species of hyrax (Heterohyrax brucei and Procavia johnstoni) on habitat islands in the Serengeti. J. Comp. Ethol 59: 110–115.Search in Google Scholar

Johnson, C.J., S.E. Nielsen, E.H. Merrill, T.L. McDonald and M.S. Boyce. 2006. Resource selection functions based on use availability data theoretical motivation and evaluation methods. J. Wild Manag. 70: 347–357.10.2193/0022-541X(2006)70[347:RSFBOU]2.0.CO;2Search in Google Scholar

Kay, R.F. and W.G. Whitford. 1978. The burrow environment of the banner-tailed kangaroo rat, Dipodomys spectabilis, in Southcentral New Mexico. Am. Midl. Nat 99: 270–279.Search in Google Scholar

Kennerly, T.E. Jr. 1964. Microenvironmental conditions of the pocket gopher burrow. Text. J. Sci 16: 395–441.Search in Google Scholar

Kinlaw, A. 1999. A review of burrowing by semi-fossorial vertebrates in arid environments. J. Arid Environ. 41: 127–145.10.1006/jare.1998.0476Search in Google Scholar

Kotler, B. 1984. Risk of predation and the structure of desert rodent communities. Ecology 65: 689–701.10.2307/1938041Search in Google Scholar

Lagos, V.O., F. Bozinovic and L.C. Contreras. 1995a. Microhabitat use by a small diurnal rodent (Octodon degus) in a semiarid environment: thermoregulatory constraints or predation risk? J. Mammal. 76: 900–905.10.2307/1382759Search in Google Scholar

Lagos, V.O., L.C. Contreras, P.L. Meserve, J.R. Gutiérrez and F.M Jaksic. 1995b. Effects of predation risk on space use by small mammals: a field experiment with a Neotropical rodent. Oikos 74: 259–264.10.2307/3545655Search in Google Scholar

Lott, D.F. 1991. Intraspecific variation in the social systems of wild vertebrates. Cambridge Univ. Press, Cambridge, UK. pp, 230.Search in Google Scholar

Luna, F., C.D. Antinuchi. 2006. Cost of foraging in the subterranean rodent Ctenomys talarum: effect of soil hardness. Can. J. Zool. 84: 661–667.10.1139/z06-040Search in Google Scholar

Luna, F. and C.D. Antinuchi. 2007. Energetics and thermoregulation during digging in the rodent tuco-tuco (Ctenomys talarum). Comp. Biochem. Phys. A 146: 559–564.10.1016/j.cbpa.2005.12.025Search in Google Scholar

MacDonald, S., C. Jones. 1987. Ochotona collaris. Mamm. Species 281: 1–4.10.2307/3503971Search in Google Scholar

Mares, M. 1997. The geobiological interface: granitic outcrops as a selective force in mammalian evolution. J. R. Soc. West. Aust. 80: 131–139.Search in Google Scholar

Mares, M.A. and T.E. Lacher. 1987. Ecological, morphological and behavioral convergence in rock-dwelling mammals. Curr. Mammal. 1: 307–348.Search in Google Scholar

Nakagawa, S. and H. Schielzeth. 2013. A general and simple method for obtaining R2 for generalized linear mixed-effects models. Method. Ecol. Evol. 4(2): 133–142.Search in Google Scholar

Nutt, K.J. 2007. Socioecology of rock-dwelling rodents. In: (J.O. Wolf and P.W. Sherman, eds.) Rodents societies: an ecological and evolutionary perspective. Chicago University Press. pp. 416–426.Search in Google Scholar

Ojeda, R.A. 1989. Small mammal responses to fire in the Monte Desert, Argentina. J. Mammal. 70: 416–420.10.2307/1381531Search in Google Scholar

Perissinotti, P.P., C.D. Antenucci, R. Zenuto and F. Luna. 2009. Effect of diet quality and soil hardness on metabolic rate in the subterranean rodent Ctenomys talarum. Comp. Biochem. Phys. A 154: 298–307.10.1016/j.cbpa.2009.05.013Search in Google Scholar

Poblete, A. and J. Minetti. 1999. Configuración espacial del clima de San Juan. Síntesis del cuaternario de la provincia de San Juan, INGEO, Universidad Nacional de San Juan, San Juan, Argentina.Search in Google Scholar

R Development Core Team. 2014. R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. http://www.R-project.org.Search in Google Scholar

Redford, K.H. and J.F. Eisenberg. 1992. Mammals of the neotropics: the southern cone. University of Chicago Press, Chicago. pp. 430.Search in Google Scholar

Reichman, O.J. and S.C. Smith. 1990. Burrows and burrowing behavior by mammals. In: (Genoways, ed.) Current mammalogy. Plenum Press, New York and London. pp. 197–244.Search in Google Scholar

Rezende, E.L., A. Cortés, L.D. Bacigalupe, R.F. Nespolo and F. Bozinovic. 2003. Ambient temperature limits above-ground activity of the subterranean rodent Spalacopus cyanus. J. Arid. Environ. 55: 63–74.10.1016/S0140-1963(02)00259-8Search in Google Scholar

Rood, J. 1967. Observaciones sobre la ecología y el comportamiento de los Caviinae de la Argentina (Mammalia, Rodentia). Zoología Platense. Investigaciones Zoologicas y Paleontologicas. 1(1): 1–6.Search in Google Scholar

Rood, J.P. 1970. Ecology and social behaviour of the desert cavy (Microcavia australis). Am. Midl. Nat. 83: 415–454.10.2307/2423954Search in Google Scholar

Rossell, Jr, C.R., S.H. Roach, I.M. Rossell and C. McGrath. 2009. Attributes of rock crevices selected by allegheny and eastern woodrats in the zone of contact in the Appalachian mountains of North Carolina. Am. Midl. Nat. 162: 200–206.10.1674/0003-0031-162.1.200Search in Google Scholar

Sassi, P., C.E Borghi and F. Bozinovic. 2011. Spatial and seasonal plasticity in digestive morphology of cavies (Microcavia australis) inhabiting habitats with different plant qualities. J. Mammal. 88: 165–172.10.1644/06-MAMM-A-046R1.1Search in Google Scholar

Schradin, C. and N. Pillay. 2006: Female striped mice (Rhabdomys pumilio) change their home ranges in response to seasonal variation in food availability. Behav. Ecol. 17: 452–458.10.1093/beheco/arj047Search in Google Scholar

Seamon, J.O. and Adler, G.H. 1996. Population performance of generalist and specialist rodents along habitat gradients. Can. J. Zool. 74: 1130–1139.10.1139/z96-125Search in Google Scholar

Shenbrot, G., B. Krasnov, I. Khokhlovaw, T. Demidovaz and L. Fielden. 2002. Habitat-dependent differences in architecture and microclimate of the burrows of Sundevall’s jird (Meriones crassus) (Rodentia: Gerbillinae) in the Negev Desert, Israel. J. Arid Environ. 51: 265–279.10.1006/jare.2001.0945Search in Google Scholar

Shipley, L.A., J.S. Forbey, B.D. Moore. 2009. Revisiting the dietary niche: when is a mammalian herbivore a specialist? Integr. Comp. Biol. 49: 274–290.10.1093/icb/icp051Search in Google Scholar PubMed

Šumbera, R., W.N. Chitaukali, M. Elichová, J. Kubová and H. Burda. 2004. Microclimatic stability in burrows of an Afrotropical solitary bathyergid rodent, the silvery mole-rat (Heliophobius argenteocinereus). J. Zool. 263: 409–416.Search in Google Scholar

Sundell, J. and H. Ylönen. 2004. Behaviour and choice of refuge by voles under predation risk. Behav. Ecol. Sociobiol. 56: 263–269.10.1007/s00265-004-0777-6Search in Google Scholar

Suvires, G.M. 2004. Procesos de piping en el piedemonte distal de la Precordillera Oriental, provincia de San Juan: factores y relieve. Rev. Asoc. Geol. Argent. 59: 385–393.Search in Google Scholar

Tabeni, S. and Ojeda, R.A. 2005. Ecology of the Monte Desert small mammals in disturbed and undisturbed habitats. J. Arid Environ. 63:244–255.10.1016/j.jaridenv.2005.03.009Search in Google Scholar

Taraborelli, P. 2009. Is communal burrowing or burrow sharing a benefit of group living in the lesser cavy Microcavia australis? Acta Theriol. 54: 249–258.10.4098/j.at.0001-7051.043.2008Search in Google Scholar

Taraborelli, P. and P. Moreno. 2009. Comparing composition of social groups, mating system and social behaviour in two populations of Microcaviaaustralis. Mamm. Biol. 74: 15–24.Search in Google Scholar

Taraborelli, P., N. Borruel, A. Sandobal and S. Giannoni. 2009. Influence of biotic and abiotic factors on the structure of burrows of the cavy Microcavia australis. Mastozool. Neotrop. 16: 411–421.Search in Google Scholar

Thompson, S.D. 1987. Resource availability an microhabitat use by Merriam’s kangaroo rats, Dipodomys merriami, in the Mojave desert. J. Mamm. 68: 256–265.10.2307/1381464Search in Google Scholar

Tognelli, M.F., C.M. Campos, R.A. Ojeda and V.G. Roig. 1995. Is Microcavia australis (Rodentia: Caviidae) associated with a particular plant structure in the Monte desert of Argentina? Mammalia 59: 327–333.10.1515/mamm.1995.59.3.327Search in Google Scholar

Tognelli, M.F., C.E. Borghi and C.M. Campos.1999. Effect of gnawing by Microcavia australis (Rodentia, Caviidae) on the survival of Geoffoea decorticans (Leguminosae) plants. J. Arid Environ. 41: 79–85.Search in Google Scholar

Tognelli, M.F., C.M. Campos and R.A. Ojeda. 2001. Microcavia australis. Mamm. Species 648: 1–4.10.1644/1545-1410(2001)648<0001:MA>2.0.CO;2Search in Google Scholar

Torres, M., C.E. Borghi, S.M. Giannoni and A. Pattini. 2003. Portal orientation and architecture of burrows in Tympanoctomys barrerae (Rodentia, Octodontidae). J. Mammal 84: 541–546.10.1644/1545-1542(2003)084<0541:POAAOB>2.0.CO;2Search in Google Scholar

Trainor, C., A. Fisher, J. Woinarski and S. Churchill. 2000. Multiscale patterns of habitat use by the Carpentarian rock-rat (Zyzomys palatalis) and the common rock-rat (Z. argurus). Wildl. Res. 27: 319–332.10.1071/WR97040Search in Google Scholar

Turner, S. 2000. The extended organism: the physiology of animal-built structures. Harvard University Press, Cambridge, Massachusetts, and London, England. pp. 229.Search in Google Scholar

Vélez, S., P. Sassi, C. Borghi, M. Monclus and M. Fornes. 2010. Effect of climatic variables of seasonal morphological changes in the testis and epididymis in the wild rodents Microcavia australis from the Andes Mountains, Argentina. J. Exp. Zool. A 313: 474–483.10.1002/jez.619Search in Google Scholar

Walsberg, G.E. 2000. Small mammals in hot deserts: some generealizations revisited. BioScience 50:109–120.10.1641/0006-3568(2000)050[0109:SMIHDS]2.3.CO;2Search in Google Scholar

Williams, S.E., Marsh H. and J. Winter. 2001. Spatial scale, species diversity, and habitat structure: small mammals in Australian tropical rain forest. Ecology 83: 1317–1329.Search in Google Scholar

Wilson, D.E. and D.M. Reeder. 2005. Mammal species of the world. A taxonomic and geographic reference (3rd ed). Johns Hopkins University Press. pp. 140–142.Search in Google Scholar

Yacante, G., G. Suvires and B. Pereyra. 1997. Procesos de sufosión (piping) en dos sitios de la Precordillera, San Juan, Argentina. II Jornadas de Geología de Precordillera, San Juan: 184–189.Search in Google Scholar

Received: 2014-5-27
Accepted: 2014-11-6
Published Online: 2014-12-13
Published in Print: 2016-1-1

©2016 by De Gruyter

Downloaded on 23.4.2024 from https://www.degruyter.com/document/doi/10.1515/mammalia-2014-0081/html
Scroll to top button