Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter December 17, 2021

Study on specific heat capacity and thermal conductivity of uranium nitride

Berechnung der spezifischen Wärmekapazität und Wärmeleitfähigkeit von Urannitrid
  • M. Gokbulut , G. Gursoy , Ş. Aşcı and E. Eser EMAIL logo
From the journal Kerntechnik

Abstract

In this study, we have proposed an analytical method for calculating the specific heat capacity of uranium nitride nuclear material. The specific heat capacity results have obtained by the use of the Debye-Einstein approximation. The thermal conductivity of nuclear material has been obtained by using the experimental data of thermal diffusivity and the calculation results of specific heat capacity. This method shows that our results are satisfactory for the wide range temperature variations. The proposed approach can be easily applied to determine the thermodynamic properties of the other nuclear materials.

Abstract

In dieser Studie wird eine analytische Methode zur Berechnung der spezifischen Wärmekapazität Uran-Nitrid, das als Brennstoff in Kernreaktoren Verwendung findet, vorgeschlagen. Die Ergebnisse der spezifischen Wärmekapazität werden dabei durch die Verwendung der Debye-Einstein-Näherung erzielt. Die Wärmeleitfähigkeit des Kernmaterials wurde durch Verwendung der experimentellen Daten der Wärmeleitfähigkeit und der Berechnungsergebnisse der spezifischen Wärmekapazität ermittelt. Diese Methode zeigt, dass unsere Ergebnisse für einen weiten Bereich von Temperaturschwankungen zufriedenstellend sind. Der vorgeschlagene Ansatz lässt sich leicht auf die Bestimmung der thermodynamischen Eigenschaften anderer Brennstoffmaterialien anwenden.

References

1 Söderlind, P.; Landa, A.; Perron, A.; Sadigh, B.; Heo, T.W.: Ground-state and thermodynamical properties of uranium monotride from anharmonic first-principles theory. Applied Sciences 9 (2019) 3914, DOI:10.3390/app918391410.3390/app9183914Search in Google Scholar

2 Szpunar, B.; Szpunar, J. A.: Thermal conductivity of uranium nitride and carbide. International Journal of Nuclear Energy 2014 (2014) 178360, DOI:10.1155/2014/17836010.1155/2014/178360Search in Google Scholar

3 Rogozkin, B. D.; Stepennova, N. M.; Proshkin, A. A.: Mononitride fuel for fast reactors. Atomic Energy 95 (2003) 624, DOI:1063-4258/03/9503-06241063-4258/03/9503-0624Search in Google Scholar

4 Rogozkin, B. D.; Stepennova, N. M.; Bergman, G. A.; Proshkin, A. A.: Thermochemical Stability, radiation testing, fabrication, and reprocessing of mononitride fuel. Atomic Energy 95 (2003) 835, DOI:1063-4258/03/9506-08351063-4258/03/9506-0835Search in Google Scholar

5 Moore, J. P.; Fulkerson, W.; McElroy, D. L.: Thermal Conductivity, Electrical Resistivity, and Seebeck Coefficient of Uranium Mononitride. Journal of the American Ceramic Society 53(2) (1970) 76, DOI:10.1111/j.1151-2916.1970.tb12014.x10.1111/j.1151-2916.1970.tb12014.xSearch in Google Scholar

6 Arai, Y.; Suzuki, Y.; Iwai, T.; Ohmichi, T.: Dependence of the thermal conductivity of (U, Pu) N on porosity and plutonium content. Journal of Nuclear Materials 195 (1992) 37, DOI:10.1016/0022-3115(92)90361-n10.1016/0022-3115(92)90361-nSearch in Google Scholar

7 Ross, S. B.; El-Genk, M. S.; Matthews, R. B.: Thermal conductivity correlation for uranium nitride fuel between 10 and 1923 K. Journal of Nuclear Materials 151 (1988) 313, DOI:10.1016/0022-3115(88)90026-°10.1016/0022-3115(88)90026-°Search in Google Scholar

8 Hayes, B. A.; DeCrescente,M. A.: Thermal conductivity and electrical receptivity of uranium mononitride. U.S. At. Energy Communucation PWAC-481 (1965) 28, DOE Contract Number: AT(30–1)-2789.Search in Google Scholar

9 Takahashi, Y.; Murabayashi, M.; Akimoto, Y.; Mukaibo, T.: Uranium mononitride: Heat capacity and thermal conductivity from 298 to 1000 °K. Journal of Nuclear Materials 38 (3) (1971) 303, DOI:10.1016/0022-3115(71)90059-610.1016/0022-3115(71)90059-6Search in Google Scholar

10 Westrum, E. F.; Barber, C.M.: Uranium Mononitride: Heat Capacity and Thermodynamic Properties from 58 to 350°K. The Journal of Chemistry Physics 45 (1966) 635, DOI:10.1063/1.172762110.1063/1.1727621Search in Google Scholar

11 Affortit, C.: Haleur specifique de UC et UN. Journal of Nuclear Materials 34 (1970) 105, 115(70)90014–0, DOI:10.1016/0022-10.1016/0022-Search in Google Scholar

12 Oetting, F. L.; Leitnaker, J. M.: The chemical thermodynamic properties of nuclear materials I. Uranium mononitride. The Journal of Chemistry Thermodynamics 4 (1972) 199, DOI:10.1016/0021-9614(72)90057-210.1016/0021-9614(72)90057-2Search in Google Scholar

13 Counsell, J. F.; Dell, R.M.; Martin, J. F.: Thermodynamic properties of uranium compounds. Part 2. Low-temperature heat capacity and entropy of three uranium nitrides. Trans. Faraday Soc. 62 (1966) 1736, DOI:10.1039/tf966620173610.1039/tf9666201736Search in Google Scholar

14 Hayes, S. L.; Thomas, J. K.; Peddicord, K. L.: Material property correlations for uranium mononitride. Journal of Nuclear Materials 171 (1990) 262, DOI:10.1016/0022-3115(90)90374-v10.1016/0022-3115(90)90374-vSearch in Google Scholar

15 Muta, H.; Kurosaki, K.; Uno, M.; Yamanaka, S.: Thermal and mechanical properties of uranium nitride prepared by SPS technique. Journal of Material Science 43 (2008) 6429, DOI:10.1007/s10853-008-2731-x10.1007/s10853-008-2731-xSearch in Google Scholar

16 Baranov, V. G.; Tenishev, A. V.; Kuzmin, R. S.; Pokrovskiy, S. A.; Mikhalchik, V. V.; Astafyev, V. A.; Taubin, M. L.; Solntseva, E. S.: Thermal stability investigation technique for uranium nitride. Annals of Nuclear Energy 87 (2016) 784, DOI:10.1016/j.anucene.2014.09.02310.1016/j.anucene.2014.09.023Search in Google Scholar

17 Kurosaki, K.; Yano, K.; Yamada, K.; Uno, M.; Yamanaka, S.: A molecular dynamics study of the heat capacity of uranium mononitride. Journal of Alloys Compounds 297 (2000) 1, DOI:10.1016/s0925-8388(99)00561-710.1016/s0925-8388(99)00561-7Search in Google Scholar

18 Petit, L.; Svane, A.; Szotek, Z.; Temmerman, W. M.; Stocks, G. M.: Ground-state electronic structure of actinide monocarbides and mononitrides. Physics Review B 80 (2009) 045124, DOI:10.1103/PhysRevB.80.04512410.1103/PhysRevB.80.045124Search in Google Scholar

19 Lu, Y.;Wang, B. T.; Li, R.W.; Shi, H.; Zhang, P.: Structural, electronic, and thermodynamic properties of UN: Systematic density functional calculations. Journal of Nuclear Materials 406 (2010) 218, DOI:10.1016/j.jnucmat.2010.08.02610.1016/j.jnucmat.2010.08.026Search in Google Scholar

20 Baranov, V. G.; Devyatko, Y. N.; Tenishev, A. V.; Khlunov, A. V.; Khomyakov, O. V.: A physical model for evaluating uranium nitride specific heat. Journal of Nuclear Materials 443 (2013) 248, DOI:10.1016/j.jnucmat.2012.10.04710.1016/j.jnucmat.2012.10.047Search in Google Scholar

21 Solntceva, E. S.; Taubin, M. L.; Vybyvanets, V. I.; Galyov, I. E.; Baranov, V. G.; Homyakov, O. V.; Tenishev, A. V.: Thermal conductivity of perspective fuel based on uranium nitride. Annals of Nuclear Energy 87 (2016) 799, DOI:10.1016/j.anucene.2014.08.01110.1016/j.anucene.2014.08.011Search in Google Scholar

22 Conway, J. B.; Flagella, P. N.: Physical and Mechanical Properties of Reactor Materials. GEMP-1012, General Electric Company, Cincinnati, OH, USA, 1969, p.227, DOI:10.2172/481590210.2172/4815902Search in Google Scholar

23 Matsui, T.; Ohse, R. W.: Thermodynamic properties of uranium nitride, plutonium nitride and uranium-plutonium mixed nitride. High Temperatures – High Pressures; ISSN 0018–1544, CODEN HTHPA; 19 (1) (1987) 1–17, Reference Number: 19001228Search in Google Scholar

24 Krikorian, O. H.: Thermal expansivity correlations for refractory materials with the NaCl-type structure. High Temperatures – High Pressures 20 (2) (1988) 169–175, Reference Number: AIX-20–021903, EDB-89–047747Search in Google Scholar

25 Askerov, B. M.; Cankurtaran, M.: Isobaric Specific Heat and Thermal Expansion of Solids in the Debye Approximation. Physica Status Solidi B 185 (1994) 341, DOI:10.1002/pssb.222185020410.1002/pssb.2221850204Search in Google Scholar

26 Ottonello, G.; Zuccolini,M. V.; Belmonte, D.: The vibrational behavior of silica clusters at the glass transition: Ab initio calculations and thermodynamic implications. Journal of Chemical Physics 133 (2010) 104508, PMid:20849179, DOI:10.1063/1.348319510.1063/1.3483195Search in Google Scholar PubMed

27 Koç, H.; Eser, E.; Mamedov, B. A.: Calculation of heat capacity of the nuclear fuels UO2 and NpO2 using integer and non-integer n-dimensional Debye functions. Nuclear Engineering and Design 241 (9) (2011) 3678, DOI:10.1016/j.nucengdes.2011.07.02010.1016/j.nucengdes.2011.07.020Search in Google Scholar

28 Eser, E.; Duyuran, B.; Bölükdemir, M. H.; Koç, H.: A study on heat capacity of oxide and nitride nuclear fuels by using Einstein-Debye approximation. Nuclear Engineering and Technology 52 (2020) 1208, DOI:10.1016/j.net.2019.11.012Search in Google Scholar

29 Eser, E.; Koc, H.; Gokbulut, M.; Gursoy, G.: Estimations of Heat Capacities for Actinide Dioxide: UO2, NpO2, ThO2, AND PuO2. Nuclear Engineering and Technology 46 (6) (2014) 863, DOI:10.5516/net.07.2014.02410.5516/net.07.2014.024Search in Google Scholar

30 Jacobs,M.H.G.; Schmid-Fetzer, R.; van den Berg, A. P.: An alternative use of Kieffer’s lattice dynamics model using vibrational density of states for constructing thermodynamic databases. Physics and Chemistry of Minerals 40 (2013) 207, DOI:10.1007/s00269-012-0562-410.1007/s00269-012-0562-4Search in Google Scholar

31 Mamedov, B. A.; Eser, E.; Koç, H.; Askerov, I.M.: Accurate Evaluation of the Specific Heat Capacity of Solids and its Application to MgO and ZnO Crystals. International Journal of Theormophysics 30 (2009) 1048, DOI 10.1007/s10765–009–0601–7, DOI:10.1007/s10765-009-0601-710.1007/s10765–009–0601–7Search in Google Scholar

32 Speidel, E. O.; Keller, D. L.: Fabrication and properties of hot-pressed UN. Report BMI-1633,1964, p.4, PMid:14093256, DOI:10.2172/467423610.2172/4674236Search in Google Scholar

33 Uno, M.; Nishi, T.; Takano, M.: Thermodynamic and Thermophysical Properties of the Actinide Nitrides. Comprehensive Nuclear Materials 2 (2012) 61, DOI:10.1016/β978-0-08-056033-5.00010-010.1016/β978-0-08-056033-5.00010-0Search in Google Scholar

34 Enderbrock, R. W.; Foster, E. L.; Keller, D. L.: Characterization and properties of arc-melted uranium mononitride. Technical Report BMI-1690, 1964.Search in Google Scholar

35 Whaley, H. L.; Fulkerson, W.; Potter, R. A.: Elastic Moduli and De-bye Temperature of Polycrystallıne Uranium Nitride by Ultrasonic Velocity Measurements. Journal of Nuclear Materials 31 (1969) 345, DOI:10.1016/0022-3115(69)90234-710.1016/0022-3115(69)90234-7Search in Google Scholar

36 Hayes, S. L.; Thomas, J. K.; Peddicord, K. L.: Material property correlations for uranium mononitride. Journal of Nuclear Materials 171 (1990) 289, DOI:10.1016/0022-3115(90)90376-x10.1016/0022-3115(90)90376-xSearch in Google Scholar

37 Hayes, S. L.; Thomas, J. K.; Peddicord, K. L.: Material property correlations for uraniummononitride: IV. Thermodynamic properties. Journal of Nuclear Materials 171 (1990) 300, DOI:10.1016/0022-3115(90)90377-y10.1016/0022-3115(90)90377-ySearch in Google Scholar

38 Olson, W. M.; Mulford, R. N. R.: The Decomposition Pressure and Melting Point of Uranium Mononitride. The Journal of Physical Chemistry 67(4) (1963) 952, DOI:10.1021/j100798α52510.1021/j100798α525Search in Google Scholar

Received: 2021-07-17
Published Online: 2021-12-17

© 2021 Walter de Gruyter GmbH, Berlin/Boston, Germany

Downloaded on 24.4.2024 from https://www.degruyter.com/document/doi/10.1515/kern-2021-1010/html
Scroll to top button