Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter May 26, 2021

Arrestin-dependent internalization of rhodopsin-like G protein-coupled receptors

  • Lizzy Wanka

    Lizzy Wanka studied biochemistry, bachelor and master, at Leipzig University. She performed her PhD studies in Leipzig in the lab of Prof. Dr. Annette G. Beck-Sickinger about the Arrestin-3 recruitment of human neuropeptid Y receptors. Currently, she is working in the research center Borstel in the working group clinical and molecular allergology of Prof. Dr. Uta Jappe investigating allergens and their molecular impact on cells.

    , Victoria Behr

    Victoria Behr earned her bachelor’s and master’s degree in biochemistry from the Leipzig University (Leipzig, Germany), broadening the scope of her studies with an internship at NSTDA-BIOTEC (Thailand). She is now doing her PhD in Professor Annette G. Beck-Sickinger’s group at the Leipzig University, focusing on the investigation of G protein-coupled receptors by performing cell-based assays and protein expression.

    and Annette G. Beck-Sickinger

    Annette G. Beck-Sickinger is professor of biochemistry and bioorganic chemistry at Leipzig University (Germany). Her major research fields include structure-activity relationships of peptide/protein hormones and G protein-coupled receptors. She has been awarded many prizes including the Leonidas Zervas Award of the European Peptide Society, the gold medal of the Max-Bergmann-Kreis (2009), the Albrecht Kossel Award of Biochemistry of the GDCh (2018) and the Du Vigneaud Award of the American Peptide Society (2019). She is a member of the National Academy of Science Leopoldina in Germany and was awarded with the Saxonian Order of Merit in 2017.

    ORCID logo EMAIL logo
From the journal Biological Chemistry

Abstract

The internalization of G protein-coupled receptors (GPCRs) is an important mechanism regulating the signal strength and limiting the opportunity of receptor activation. Based on the importance of GPCRs, the detailed knowledge about the regulation of signal transduction is crucial. Here, current knowledge about the agonist-induced, arrestin-dependent internalization process of rhodopsin-like GPCRs is reviewed. Arrestins are conserved molecules that act as key players within the internalization process of many GPCRs. Based on highly conserved structural characteristics within the rhodopsin-like GPCRs, the identification of arrestin interaction sites in model systems can be compared and used for the investigation of internalization processes of other receptors. The increasing understanding of this essential regulation mechanism of receptors can be used for drug development targeting rhodopsin-like GPCRs. Here, we focus on the neuropeptide Y receptor family, as these receptors transmit various physiological processes such as food intake, energy homeostasis, and regulation of emotional behavior, and are further involved in pathophysiological processes like cancer, obesity and mood disorders. Hence, this receptor family represents an interesting target for the development of novel therapeutics requiring the understanding of the regulatory mechanisms influencing receptor mediated signaling.


Corresponding author: Annette G. Beck-Sickinger, Institute of Biochemistry, Faculty of Life Sciences, Leipzig University, Brüderstr. 34, D-04103 Leipzig, Germany, E-mail:
Lizzy Wanka and Victoria Behr contributed equally to this article.

Award Identifier / Grant number: 421152132, SFB 1423, A04/B01

About the authors

Lizzy Wanka

Lizzy Wanka studied biochemistry, bachelor and master, at Leipzig University. She performed her PhD studies in Leipzig in the lab of Prof. Dr. Annette G. Beck-Sickinger about the Arrestin-3 recruitment of human neuropeptid Y receptors. Currently, she is working in the research center Borstel in the working group clinical and molecular allergology of Prof. Dr. Uta Jappe investigating allergens and their molecular impact on cells.

Victoria Behr

Victoria Behr earned her bachelor’s and master’s degree in biochemistry from the Leipzig University (Leipzig, Germany), broadening the scope of her studies with an internship at NSTDA-BIOTEC (Thailand). She is now doing her PhD in Professor Annette G. Beck-Sickinger’s group at the Leipzig University, focusing on the investigation of G protein-coupled receptors by performing cell-based assays and protein expression.

Annette G. Beck-Sickinger

Annette G. Beck-Sickinger is professor of biochemistry and bioorganic chemistry at Leipzig University (Germany). Her major research fields include structure-activity relationships of peptide/protein hormones and G protein-coupled receptors. She has been awarded many prizes including the Leonidas Zervas Award of the European Peptide Society, the gold medal of the Max-Bergmann-Kreis (2009), the Albrecht Kossel Award of Biochemistry of the GDCh (2018) and the Du Vigneaud Award of the American Peptide Society (2019). She is a member of the National Academy of Science Leopoldina in Germany and was awarded with the Saxonian Order of Merit in 2017.

Acknowledgement

We acknowledge the use of the Protein Data Bank (https://www.rcsb.org/) and the support of Stefanie Babilon for microscopic images.

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: The financial contribution of the Deutsche Forschungsgemeinschaft DFG, German Research Foundation, project number 421152132, SFB 1423, subprojects A04/B01 is kindly acknowledged. We thank the Fonds der Chemischen Industrie (FCI) for financial support.

  3. Conflict of interest statement: The authors declare that there are no competing interests associated with the manuscript.

References

Aakerlund, L., Gether, U., Fuhlendorff, J., Schwartz, T.W., and Thastrup, O. (1990). Y1 receptors for neuropeptide Y are coupled to mobilization of intracellular calcium and inhibition of adenylate cyclase. FEBS Lett. 260: 73–78, https://doi.org/10.1016/0014-5793(90)80069-u.Search in Google Scholar

Adrian, T.E., Allen, J.M., Bloom, S.R., Ghatei, M.A., Rossor, M.N., Roberts, G.W., Crow, T.J., Tatemoto, K., and Polak, J.M. (1983). Neuropeptide Y distribution in human brain. Nature 306: 584–586, https://doi.org/10.1038/306584a0.Search in Google Scholar

Alexander, S.P.H., Christopoulos, A., Davenport, A.P., Kelly, E., Mathie, A., Peters, J.A., Veale, E.L., Armstrong, J.F., Faccenda, E., Harding, S.D., et al.. (2019). The concise guide to pharmacology 2019/20: G protein-coupled receptors. Br. J. Pharmacol. 176: S21–S141, https://doi.org/10.1111/bph.14750.Search in Google Scholar

Aloj, L., Giger, O., Mendichovszky, I.A., Challis, B.G., Ronel, M., Harper, I., Cheow, H., Hoopen, R.T., Pitfield, D., Gallagher, F.A., et al.. (2021). The role of [(68) Ga]Ga-DOTATATE PET/CT in wild-type KIT/PDGFRA gastrointestinal stromal tumours (GIST). EJNMMI Res. 11: 5, https://doi.org/10.1186/s13550-021-00747-0.Search in Google Scholar

Antonescu, C.N., Aguet, F., Danuser, G., and Schmid, S.L. (2011). Phosphatidylinositol-(4,5)-bisphosphate regulates clathrin-coated pit initiation, stabilization, and size. Mol. Biol. Cell 22: 2588–2600, https://doi.org/10.1091/mbc.e11-04-0362.Search in Google Scholar

Attramadal, H., Arriza, J.L., Aoki, C., Dawson, T.M., Codina, J., Kwatra, M.M., Snyder, S.H., Caron, M.G., and Lefkowitz, R.J. (1992). Beta-arrestin2, a novel member of the arrestin/beta-arrestin gene family. J. Biol. Chem. 267: 17882–17890, https://doi.org/10.1016/s0021-9258(19)37125-x.Search in Google Scholar

Barak, L.S., Menard, L., Ferguson, S.S., Colapietro, A.M., and Caron, M.G. (1995). The conserved seven-transmembrane sequence NP(X)2,3Y of the G-protein-coupled receptor superfamily regulates multiple properties of the beta 2-adrenergic receptor. Biochemistry 34: 15407–15414, https://doi.org/10.1021/bi00047a003.Search in Google Scholar PubMed

Bennett, T.A., Maestas, D.C., and Prossnitz, E.R. (2000). Arrestin binding to the G protein-coupled N-formyl peptide receptor is regulated by the conserved “DRY” sequence. J. Biol. Chem. 275: 24590–24594, https://doi.org/10.1074/jbc.c000314200.Search in Google Scholar PubMed

Böhme, I., Stichel, J., Walther, C., Mörl, K., and Beck-Sickinger, A.G. (2008). Agonist induced receptor internalization of neuropeptide Y receptor subtypes depends on third intracellular loop and C-terminus. Cell. Signal. 20: 1740–1749, https://doi.org/10.1016/j.cellsig.2008.05.017.Search in Google Scholar PubMed

Brame, A.L., Maguire, J.J., Yang, P., Dyson, A., Torella, R., Cheriyan, J., Singer, M., Glen, R.C., Wilkinson, I.B., and Davenport, A.P. (2015). Design, characterization, and first-in-human study of the vascular actions of a novel biased apelin receptor agonist. Hypertension 65: 834–840, https://doi.org/10.1161/hypertensionaha.114.05099.Search in Google Scholar

Butcher, A.J., Prihandoko, R., Kong, K.C., Mcwilliams, P., Edwards, J.M., Bottrill, A., Mistry, S., and Tobin, A.B. (2011). Differential G-protein-coupled receptor phosphorylation provides evidence for a signaling bar code. J. Biol. Chem. 286: 11506–11518, https://doi.org/10.1074/jbc.m110.154526.Search in Google Scholar

Cahill, T.J., Thomsen, A.R., Tarrasch, J.T., Plouffe, B., Nguyen, A.H., Yang, F., Huang, L.Y., Kahsai, A.W., Bassoni, D.L., Gavino, B.J., et al.. (2017). Distinct conformations of GPCR-beta-arrestin complexes mediate desensitization, signaling, and endocytosis. Proc. Natl. Acad. Sci. U. S. A. 114: 2562–2567, https://doi.org/10.1073/pnas.1701529114.Search in Google Scholar

Celver, J.P., Lowe, J., Kovoor, A., Gurevich, V.V., and Chavkin, C. (2001). Threonine 180 is required for G protein-coupled receptor kinase 3 and b-arrestin mediated desensitization of the mu-opioid receptor in Xenopus oocytes. J. Biol. Chem. 276: 4894–4900, https://doi.org/10.1074/jbc.m007437200.Search in Google Scholar

Cen, B., Xiong, Y., Ma, L., and Pei, G. (2001). Direct and differential interaction of beta-arrestins with the intracellular domains of different opioid receptors. Mol. Pharmacol. 59: 758–764, https://doi.org/10.1124/mol.59.4.758.Search in Google Scholar

Chen, Q., Iverson, T.M., and Gurevich, V.V. (2018). Structural basis of arrestin-dependent signal transduction. Trends Biochem. Sci. 43: 412–423, https://doi.org/10.1016/j.tibs.2018.03.005.Search in Google Scholar

Chen, Q., Zhuo, Y., Sharma, P., Perez, I., Francis, D.J., Chakravarthy, S., Vishnivetskiy, S.A., Berndt, S., Hanson, S.M., Zhan, X., et al.. (2020). An eight amino acid segment controls oligomerization and preferred conformation of the two non-visual arrestins. J. Mol. Biol. 433: 166790, https://doi.org/10.1016/j.jmb.2020.166790.Search in Google Scholar

Conroy, J.L., Free, R.B., and Sibley, D.R. (2015). Identification of G protein-biased agonists that fail to recruit beta-arrestin or promote internalization of the D1 dopamine receptor. ACS Chem. Neurosci. 6: 681–692, https://doi.org/10.1021/acschemneuro.5b00020.Search in Google Scholar

Craft, C.M., Whitmore, D.H., and Wiechmann, A.F. (1994). Cone arrestin identified by targeting expression of a functional family. J. Biol. Chem. 269: 4613–4619, https://doi.org/10.1016/s0021-9258(17)41820-5.Search in Google Scholar

Degraff, J.L., Gurevich, V.V., and Benovic, J.L. (2002). The third intracellular loop of alpha 2-adrenergic receptors determines subtype specificity of arrestin interaction. J. Biol. Chem. 277: 43247–43252, https://doi.org/10.1074/jbc.m207495200.Search in Google Scholar PubMed

Dwivedi-Agnihotri, H., Chaturvedi, M., Baidya, M., Stepniewski, T.M., Pandey, S., Maharana, J., Srivastava, A., Caengprasath, N., Hanyaloglu, A.C., Selent, J., et al.. (2020). Distinct phosphorylation sites in a prototypical GPCR differently orchestrate beta-arrestin interaction, trafficking, and signaling. Sci. Adv. 6: 37, https://doi.org/10.1126/sciadv.abb8368.Search in Google Scholar PubMed PubMed Central

Eason, M.G., Moreira, S.P., and Liggett, S.B. (1995). Four consecutive serines in the third intracellular loop are the sites for beta-adrenergic receptor kinase-mediated phosphorylation and desensitization of the alpha 2A-adrenergic receptor. J. Biol. Chem. 270: 4681–4688, https://doi.org/10.1074/jbc.270.9.4681.Search in Google Scholar

Ekblad, E. and Sundler, F. (2002). Distribution of pancreatic polypeptide and peptide YY. Peptides 23: 251–261, https://doi.org/10.1016/s0196-9781(01)00601-5.Search in Google Scholar

Fan, X., Gu, X., Zhao, R., Zheng, Q., Li, L., Yang, W., Ding, L., Xue, F., Fan, J., Gong, Y., et al.. (2016). Cardiac beta2-adrenergic receptor phosphorylation at ser355/356 regulates receptor internalization and functional resensitization. PloS One 11: e0161373, https://doi.org/10.1371/journal.pone.0161373.Search in Google Scholar PubMed PubMed Central

Ferguson, S.S., Downey, W.E., Colapietro, A.M., Barak, L.S., Menard, L., and Caron, M.G. (1996). Role of beta-arrestin in mediating agonist-promoted G protein-coupled receptor internalization. Science 271: 363–366, https://doi.org/10.1126/science.271.5247.363.Search in Google Scholar PubMed

Feuerstein, S.E., Pulvermüller, A., Hartmann, R., Granzin, J., Stoldt, M., Henklein, P., Ernst, O.P., Heck, M., Willbold, D., Koenig, B.W., et al.. (2009). Helix formation in arrestin accompanies recognition of photoactivated rhodopsin. Biochemistry 48: 10733–10742, https://doi.org/10.1021/bi900544p.Search in Google Scholar PubMed

Finan, B., Yang, B., Ottaway, N., Stemmer, K., Muller, T.D., Yi, C.X., Habegger, K., Schriever, S.C., Garcia-Caceres, C., and Kabra, D.G. (2012). Targeted estrogen delivery reverses the metabolic syndrome. Nat. Med. 18: 1847–1856, https://doi.org/10.1038/nm.3009.Search in Google Scholar PubMed PubMed Central

Fredriksson, R., Lagerström, M.C., Lundin, L.G., and Schiöth, H.B. (2003). The G-protein-coupled receptors in the human genome form five main families. Phylogenetic analysis, paralogon groups, and fingerprints. Mol. Pharmacol. 63: 1256–1272, https://doi.org/10.1124/mol.63.6.1256.Search in Google Scholar PubMed

Furness, S.G.B. and Sexton, P.M. (2017). Coding GPCR-G protein specificity. Cell Res. 27: 1193–1194, https://doi.org/10.1038/cr.2017.92.Search in Google Scholar PubMed PubMed Central

Gaidarov, I., Krupnick, J.G., Falck, J.R., Benovic, J.L., and Keen, J.H. (1999). Arrestin function in G protein-coupled receptor endocytosis requires phosphoinositide binding. EMBO J. 18: 871–881, https://doi.org/10.1093/emboj/18.4.871.Search in Google Scholar PubMed PubMed Central

Ghanouni, P., Gryczynski, Z., Steenhuis, J.J., Lee, T.W., Farrens, D.L., Lakowicz, J.R., and Kobilka, B.K. (2001). Functionally different agonists induce distinct conformations in the G protein coupling domain of the beta 2 adrenergic receptor. J. Biol. Chem. 276: 24433–24436, https://doi.org/10.1074/jbc.c100162200.Search in Google Scholar

Gicquiaux, H., Lecat, S., Gaire, M., Dieterlen, A., Mély, Y., Takeda, K., Bucher, B., and Galzi, J.L. (2002). Rapid internalization and recycling of the human neuropeptide Y Y(1) receptor. J. Biol. Chem. 277: 6645–6655, https://doi.org/10.1074/jbc.m107224200.Search in Google Scholar

Gimenez, L.E., Babilon, S., Wanka, L., Beck-Sickinger, A.G., and Gurevich, V.V. (2014). Mutations in arrestin-3 differentially affect binding to neuropeptide Y receptor subtypes. Cell. Signal. 26: 1523–1531, https://doi.org/10.1016/j.cellsig.2014.03.019.Search in Google Scholar

Gloriam, D.E., Fredriksson, R., and Schiöth, H.B. (2007). The G protein-coupled receptor subset of the rat genome. BMC Genom. 8: 338, https://doi.org/10.1186/1471-2164-8-338.Search in Google Scholar

Goodman, O.B.Jr., Krupnick, J.G., Santini, F., Gurevich, V.V., Penn, R.B., Gagnon, A.W., Keen, J.H., and Benovic, J.L. (1996). Beta-arrestin acts as a clathrin adaptor in endocytosis of the beta2-adrenergic receptor. Nature 383: 447–450, https://doi.org/10.1038/383447a0.Search in Google Scholar

Gurevich, E.V., Tesmer, J.J., Mushegian, A., and Gurevich, V.V. (2012). G protein-coupled receptor kinases: more than just kinases and not only for GPCRs. Pharmacol. Ther. 133: 40–69, https://doi.org/10.1016/j.pharmthera.2011.08.001.Search in Google Scholar

Gurevich, V.V. and Benovic, J.L. (1993). Visual arrestin interaction with rhodopsin. Sequential multisite binding ensures strict selectivity toward light-activated phosphorylated rhodopsin. J. Biol. Chem. 268: 11628–11638, https://doi.org/10.1016/s0021-9258(19)50248-4.Search in Google Scholar

Gurevich, V.V. and Benovic, J.L. (1997). Mechanism of phosphorylation-recognition by visual arrestin and the transition of arrestin into a high affinity binding state. Mol. Pharmacol. 51: 161–169, https://doi.org/10.1124/mol.51.1.161.Search in Google Scholar PubMed

Gurevich, V.V., Chen, Q., and Gurevich, E.V. (2018). Arrestins: introducing signaling bias into multifunctional proteins. Prog. Mol. Biol. Transl. Sci. 160: 47–61, https://doi.org/10.1016/bs.pmbts.2018.07.007.Search in Google Scholar PubMed PubMed Central

Gurevich, V.V., Dion, S.B., Onorato, J.J., Ptasienski, J., Kim, C.M., Sterne-Marr, R., Hosey, M.M., and Benovic, J.L. (1995). Arrestin interactions with G protein-coupled receptors. Direct binding studies of wild type and mutant arrestins with rhodopsin, beta 2-adrenergic, and m2 muscarinic cholinergic receptors. J. Biol. Chem. 270: 720–731, https://doi.org/10.1074/jbc.270.2.720.Search in Google Scholar PubMed

Gurevich, V.V. and Gurevich, E.V. (2006). The structural basis of arrestin-mediated regulation of G-protein-coupled receptors. Pharmacol. Ther. 110: 465–502, https://doi.org/10.1016/j.pharmthera.2005.09.008.Search in Google Scholar PubMed PubMed Central

Gurevich, V.V. and Gurevich, E.V. (2019). GPCR signaling regulation: the role of GRKs and arrestins. Front. Pharmacol. 10: 125, https://doi.org/10.3389/fphar.2019.00125.Search in Google Scholar

Gurevich, V.V. and Gurevich, E.V. (2020). Biased GPCR signaling: possible mechanisms and inherent limitations. Pharmacol. Ther. 211: 107540, https://doi.org/10.1016/j.pharmthera.2020.107540.Search in Google Scholar

Han, M., Gurevich, V.V., Vishnivetskiy, S.A., Sigler, P.B., and Schubert, C. (2001). Crystal structure of beta-arrestin at 1.9 A: possible mechanism of receptor binding and membrane translocation. Structure 9: 869–880, https://doi.org/10.1016/s0969-2126(01)00644-x.Search in Google Scholar

Hanson, S.M., Francis, D.J., Vishnivetskiy, S.A., Kolobova, E.A., Hubbell, W.L., Klug, C.S., and Gurevich, V.V. (2006). Differential interaction of spin-labeled arrestin with inactive and active phosphorhodopsin. Proc. Natl. Acad. Sci. U. S. A. 103: 4900–4905, https://doi.org/10.1073/pnas.0600733103.Search in Google Scholar

Herzog, H., Hort, Y.J., Ball, H.J., Hayes, G., Shine, J., and Selbie, L.A. (1992). Cloned human neuropeptide Y receptor couples to two different second messenger systems. Proc. Natl. Acad. Sci. U. S. A. 89: 5794–5798, https://doi.org/10.1073/pnas.89.13.5794.Search in Google Scholar

Hinz, L., Ahles, A., Ruprecht, B., Küster, B., and Engelhardt, S. (2017). Two serines in the distal C-terminus of the human ss1-adrenoceptor determine ss-arrestin2 recruitment. PloS One 12: e0176450, https://doi.org/10.1371/journal.pone.0176450.Search in Google Scholar

Hirsch, J.A., Schubert, C., Gurevich, V.V., and Sigler, P.B. (1999). The 2.8 A crystal structure of visual arrestin: a model for arrestin’s regulation. Cell 97: 257–269, https://doi.org/10.1016/s0092-8674(00)80735-7.Search in Google Scholar

Holliday, N.D., Holst, B., Rodionova, E.A., Schwartz, T.W., and Cox, H.M. (2007). Importance of constitutive activity and arrestin-independent mechanisms for intracellular trafficking of the ghrelin receptor. Mol. Endocrinol. 21: 3100–3112, https://doi.org/10.1210/me.2007-0254.Search in Google Scholar PubMed

Holliday, N.D., Lam, C.W., Tough, I.R., and Cox, H.M. (2005). Role of the C terminus in neuropeptide Y Y1 receptor desensitization and internalization. Mol. Pharmacol. 67: 655–664, https://doi.org/10.1124/mol.104.006114.Search in Google Scholar PubMed

Hoppenz, P., Els-Heindl, S., and Beck-Sickinger, A.G. (2020). Peptide-drug conjugates and their targets in advanced cancer therapies. Front. Chem. 8: 571, https://doi.org/10.3389/fchem.2020.00571.Search in Google Scholar PubMed PubMed Central

Hu, J., Stern, M., Gimenez, L.E., Wanka, L., Zhu, L., Rossi, M., Meister, J., Inoue, A., Beck-Sickinger, A.G., Gurevich, V.V., et al.. (2016). A G protein-biased designer G protein-coupled receptor useful for studying the physiological relevance of Gq/11-dependent signaling pathways. J. Biol. Chem. 291: 7809–7820, https://doi.org/10.1074/jbc.m115.702282.Search in Google Scholar

Huang, W., Masureel, M., Qu, Q., Janetzko, J., Inoue, A., Kato, H.E., Robertson, M.J., Nguyen, K.C., Glenn, J.S., Skiniotis, G., et al.. (2020). Structure of the neurotensin receptor 1 in complex with beta-arrestin 1. Nature 579: 303–308, https://doi.org/10.1038/s41586-020-1953-1.Search in Google Scholar

Hüttenrauch, F., Nitzki, A., Lin, F.T., Höning, S., and Oppermann, M. (2002). Beta-arrestin binding to CC chemokine receptor 5 requires multiple C-terminal receptor phosphorylation sites and involves a conserved Asp-Arg-Tyr sequence motif. J. Biol. Chem. 277: 30769–30777, https://doi.org/10.1074/jbc.m204033200.Search in Google Scholar

Kanatani, A., Mashiko, S., Murai, N., Sugimoto, N., Ito, J., Fukuroda, T., Fukami, T., Morin, N., Macneil, D.J., Van Der Ploeg, L.H., et al.. (2000). Role of the Y1 receptor in the regulation of neuropeptide Y-mediated feeding: comparison of wild-type, Y1 receptor-deficient, and Y5 receptor-deficient mice. Endocrinology 141: 1011–1016, https://doi.org/10.1210/endo.141.3.7387.Search in Google Scholar

Kang, D.S., Kern, R.C., Puthenveedu, M.A., Von Zastrow, M., Williams, J.C., and Benovic, J.L. (2009). Structure of an arrestin2-clathrin complex reveals a novel clathrin binding domain that modulates receptor trafficking. J. Biol. Chem. 284: 29860–29872, https://doi.org/10.1074/jbc.m109.023366.Search in Google Scholar

Kang, Y., Zhou, X.E., Gao, X., He, Y., Liu, W., Ishchenko, A., Barty, A., White, T.A., Yefanov, O., Han, G.W., et al.. (2015). Crystal structure of rhodopsin bound to arrestin by femtosecond X-ray laser. Nature 523: 561–567, https://doi.org/10.1038/nature14656.Search in Google Scholar

Kenakin, T. (1995). Agonist-receptor efficacy. II. Agonist trafficking of receptor signals. Trends Pharmacol. Sci. 16: 232–238, https://doi.org/10.1016/s0165-6147(00)89032-x.Search in Google Scholar

Kim, J., Ahn, S., Ren, X.R., Whalen, E.J., Reiter, E., Wei, H., and Lefkowitz, R.J. (2005). Functional antagonism of different G protein-coupled receptor kinases for beta-arrestin-mediated angiotensin II receptor signaling. Proc. Natl. Acad. Sci. U. S. A. 102: 1442–1447, https://doi.org/10.1073/pnas.0409532102.Search in Google Scholar PubMed PubMed Central

Kim, K.M., Valenzano, K.J., Robinson, S.R., Yao, W.D., Barak, L.S., and Caron, M.G. (2001). Differential regulation of the dopamine D2 and D3 receptors by G protein-coupled receptor kinases and beta-arrestins. J. Biol. Chem. 276: 37409–37414, https://doi.org/10.1074/jbc.m106728200.Search in Google Scholar

Kim, Y.J., Hofmann, K.P., Ernst, O.P., Scheerer, P., Choe, H.W., and Sommer, M.E. (2013). Crystal structure of pre-activated arrestin p44. Nature 497: 142–146, https://doi.org/10.1038/nature12133.Search in Google Scholar PubMed

Kim, Y.M. and Benovic, J.L. (2002). Differential roles of arrestin-2 interaction with clathrin and adaptor protein 2 in G protein-coupled receptor trafficking. J. Biol. Chem. 277: 30760–30768, https://doi.org/10.1074/jbc.m204528200.Search in Google Scholar

Körner, M., Waser, B., and Reubi, J.C. (2005). Neuropeptide Y receptors in renal cell carcinomas and nephroblastomas. Int. J. Canc. 115: 734–741, https://doi.org/10.1002/ijc.20948.Search in Google Scholar

Krasel, C., Bünemann, M., Lorenz, K., and Lohse, M.J. (2005). Beta-arrestin binding to the beta2-adrenergic receptor requires both receptor phosphorylation and receptor activation. J. Biol. Chem. 280: 9528–9535, https://doi.org/10.1074/jbc.m413078200.Search in Google Scholar

Krumins, A.M. and Barber, R. (1997). The stability of the agonist beta2-adrenergic receptor-Gs complex: evidence for agonist-specific states. Mol. Pharmacol. 52: 144–15, https://doi.org/10.1124/mol.52.1.144.Search in Google Scholar

Kühn, H. and Dreyer, W.J. (1972). Light dependent phosphorylation of rhodopsin by ATP. FEBS Lett. 20: 1–6, https://doi.org/10.1016/0014-5793(72)80002-4.Search in Google Scholar

Lamb, M.E., De Weerd, W.F., and Leeb-Lundberg, L.M. (2001). Agonist-promoted trafficking of human bradykinin receptors: arrestin- and dynamin-independent sequestration of the B2 receptor and bradykinin in HEK293 cells. Biochem. J. 355: 741–750, https://doi.org/10.1042/bj3550741.Search in Google Scholar PubMed PubMed Central

Lamichhane, R., Liu, J.J., White, K.L., Katritch, V., Stevens, R.C., Wüthrich, K., and Millar, D.P. (2020). Biased signaling of the G-protein-coupled receptor beta2AR is governed by conformational exchange kinetics. Structure 28: 371–377, https://doi.org/10.1016/j.str.2020.01.001.Search in Google Scholar PubMed PubMed Central

Lan, H., Liu, Y., Bell, M.I., Gurevich, V.V., and Neve, K.A. (2009a). A dopamine D2 receptor mutant capable of G protein-mediated signaling but deficient in arrestin binding. Mol. Pharmacol. 75: 113–123, https://doi.org/10.1124/mol.108.050534.Search in Google Scholar PubMed PubMed Central

Lan, H., Teeter, M.M., Gurevich, V.V., and Neve, K.A. (2009b). An intracellular loop 2 amino acid residue determines differential binding of arrestin to the dopamine D2 and D3 receptors. Mol. Pharmacol. 75: 19–26, https://doi.org/10.1124/mol.108.050542.Search in Google Scholar PubMed PubMed Central

Laporte, S.A., Oakley, R.H., Holt, J.A., Barak, L.S., and Caron, M.G. (2000). The interaction of beta-arrestin with the AP-2 adaptor is required for the clustering of beta 2-adrenergic receptor into clathrin-coated pits. J. Biol. Chem. 275: 23120–23126, https://doi.org/10.1074/jbc.m002581200.Search in Google Scholar PubMed

Larhammar, D., Blomqvist, A.G., Yee, F., Jazin, E., Yoo, H., and Wahlested, C. (1992). Cloning and functional expression of a human neuropeptide Y/peptide YY receptor of the Y1 type. J. Biol. Chem. 267: 10935–10938, https://doi.org/10.1016/s0021-9258(19)49854-2.Search in Google Scholar

Lazari, M.F., Bertrand, J.E., Nakamura, K., Liu, X., Krupnick, J.G., Benovic, J.L., and Ascoli, M. (1998). Mutation of individual serine residues in the C-terminal tail of the lutropin/choriogonadotropin receptor reveal distinct structural requirements for agonist-induced uncoupling and agonist-induced internalization. J. Biol. Chem. 273: 18316–18324, https://doi.org/10.1074/jbc.273.29.18316.Search in Google Scholar

Lecat, S., Ouédraogo, M., Cherrier, T., Noulet, F., Rondé, P., Glasser, N., Galzi, J.L., Mely, Y., Takeda, K., and Bucher, B. (2011). Contribution of a tyrosine-based motif to cellular trafficking of wild-type and truncated NPY Y(1) receptors. Cell. Signal. 23: 228–238, https://doi.org/10.1016/j.cellsig.2010.09.007.Search in Google Scholar

Lee, K.B., Ptasienski, J.A., Bunemann, M., and Hosey, M.M. (2000). Acidic amino acids flanking phosphorylation sites in the M2 muscarinic receptor regulate receptor phosphorylation, internalization, and interaction with arrestins. J. Biol. Chem. 275: 35767–35777, https://doi.org/10.1074/jbc.m002225200.Search in Google Scholar

Leff, P. (1995). The two-state model of receptor activation. Trends Pharmacol. Sci. 16: 89–97, https://doi.org/10.1016/s0165-6147(00)88989-0.Search in Google Scholar

Li, J.H., Han, S.J., Hamdan, F.F., Kim, S.K., Jacobson, K.A., Bloodworth, L.M., Zhang, X., and Wess, J. (2007). Distinct structural changes in a G protein-coupled receptor caused by different classes of agonist ligands. J. Biol. Chem. 282: 26284–26293, https://doi.org/10.1074/jbc.m704875200.Search in Google Scholar

Li, X.A., Sutcliffe, M.J., Schwartz, T.W., and Dobson, C.M. (1992). Sequence-specific 1H NMR assignments and solution structure of bovine pancreatic polypeptide. Biochemistry 31: 1245–1253, https://doi.org/10.1021/bi00119a038.Search in Google Scholar PubMed

Lu, C., Everhart, L., Tilan, J., Kuo, L., Sun, C.C., Munivenkatappa, R.B., Jonsson-Rylander, A.C., Sun, J., Kuan-Celarier, A., Li, L., et al.. (2010). Neuropeptide Y and its Y2 receptor: potential targets in neuroblastoma therapy. Oncogene 29: 5630–5642, https://doi.org/10.1038/onc.2010.301.Search in Google Scholar PubMed PubMed Central

Luttrell, L.M., Ferguson, S.S., Daaka, Y., Miller, W.E., Maudsley, S., Della Rocca, G.J., Lin, F., Kawakatsu, H., Owada, K., Luttrell, D.K., et al.. (1999). Beta-arrestin-dependent formation of beta2 adrenergic receptor-Src protein kinase complexes. Science 283: 655–661, https://doi.org/10.1126/science.283.5402.655.Search in Google Scholar PubMed

Mafi, A., Kim, S.K., and Goddard, W.A. (2020). Mechanism of beta-arrestin recruitment by the μ-opioid G protein-coupled receptor. Proc. Natl. Acad. Sci. U. S. A. 117: 16346–16355, https://doi.org/10.1073/pnas.1918264117.Search in Google Scholar PubMed PubMed Central

Malik, R.U., Ritt, M., Devree, B.T., Neubig, R.R., Sunahara, R.K., and Sivaramakrishnan, S. (2013). Detection of G protein-selective G protein-coupled receptor (GPCR) conformations in live cells. J. Biol. Chem. 288: 17167–17178, https://doi.org/10.1074/jbc.m113.464065.Search in Google Scholar

Marion, S., Oakley, R.H., Kim, K.M., Caron, M.G., and Barak, L.S. (2006). A beta-arrestin binding determinant common to the second intracellular loops of rhodopsin family G protein-coupled receptors. J. Biol. Chem. 281: 2932–2938, https://doi.org/10.1074/jbc.m508074200.Search in Google Scholar

Martins, E., Brodier, H., Rossitto-Borlat, I., Ilgaz, I., Villard, M., and Hartley, O. (2020). Arrestin recruitment to C-C chemokine receptor 5: potent C-C chemokine ligand 5 analogs reveal differences in dependence on receptor phosphorylation and isoform-specific recruitment bias. Mol. Pharmacol. 98: 599–611, https://doi.org/10.1124/molpharm.120.000036.Search in Google Scholar

Mcdonald, P.H., Chow, C.W., Miller, W.E., Laporte, S.A., Field, M.E., Lin, F.T., Davis, R.J., and Lefkowitz, R.J. (2000). β-arrestin 2: a receptor-regulated MAPK scaffold for the activation of JNK3. Science 290: 1574–1577, https://doi.org/10.1126/science.290.5496.1574.Search in Google Scholar

Mentlein, R., Dahms, P., Grandt, D., and Krüger, R. (1993). Proteolytic processing of neuropeptide Y and peptide YY by dipeptidyl peptidase IV. Regul. Pept. 49: 133–144, https://doi.org/10.1016/0167-0115(93)90435-b.Search in Google Scholar

Michel, M.C., Beck-Sickinger, A., Cox, H., Doods, H.N., Herzog, H., Larhammar, D., Quirion, R., Schwartz, T., and Westfall, T. (1998). XVI. International Union of Pharmacology recommendations for the nomenclature of neuropeptide Y, peptide YY, and pancreatic polypeptide receptors. Pharmacol. Rev. 50: 143–150.Search in Google Scholar

Miller, W.E., Maudsley, S., Ahn, S., Khan, K.D., Luttrell, L.M., and Lefkowitz, R.J. (2000). Beta-arrestin1 interacts with the catalytic domain of the tyrosine kinase c-SRC. Role of beta-arrestin1-dependent targeting of c-SRC in receptor endocytosis. J. Biol. Chem. 275: 11312–11319, https://doi.org/10.1074/jbc.275.15.11312.Search in Google Scholar PubMed

Min, C., Zheng, M., Zhang, X., Caron, M.G., and Kim, K.M. (2013). Novel roles for β-arrestins in the regulation of pharmacological sequestration to predict agonist-induced desensitization of dopamine D3 receptors. Br. J. Pharmacol. 170: 1112–1129, https://doi.org/10.1111/bph.12357.Search in Google Scholar PubMed PubMed Central

Moreno, P., Ramos-Álvarez, I., Moody, T.W., and Jensen, R.T. (2016). Bombesin related peptides/receptors and their promising therapeutic roles in cancer imaging, targeting and treatment. Expert Opin. Ther. Targets 20: 1055–1073, https://doi.org/10.1517/14728222.2016.1164694.Search in Google Scholar PubMed PubMed Central

Nakamura, K., Hipkin, R.W., and Ascoli, M. (1998). The agonist-induced phosphorylation of the rat follitropin receptor maps to the first and third intracellular loops. Mol. Endocrinol. 12: 580–591, https://doi.org/10.1210/mend.12.4.0087.Search in Google Scholar PubMed

Nakamura, K., Liu, X., and Ascoli, M. (2000). Seven non-contiguous intracellular residues of the lutropin/choriogonadotropin receptor dictate the rate of agonist-induced internalization and its sensitivity to non-visual arrestins. J. Biol. Chem. 275: 241–247, https://doi.org/10.1074/jbc.275.1.241.Search in Google Scholar PubMed

Nguyen, A.H. and Lefkowitz, R.J. (2021). Signaling at the endosome: cryo-EM structure of a GPCR-G protein-beta-arrestin megacomplex. FEBS J., https://doi.org/10.1111/febs.15773 (Epub ahead of print).Search in Google Scholar PubMed PubMed Central

Nguyen, A.H., Thomsen, A.R.B., Cahill, T.J., Huang, R., Huang, L.Y., Marcink, T., Clarke, O.B., Heissel, S., Masoudi, A., Ben-Hail, D., et al.. (2019). Structure of an endosomal signaling GPCR-G protein-beta-arrestin megacomplex. Nat. Struct. Mol. Biol. 26: 1123–1131, https://doi.org/10.1038/s41594-019-0330-y.Search in Google Scholar PubMed PubMed Central

Nir, I. and Ransom, N. (1992). S-antigen in rods and cones of the primate retina: different labeling patterns are revealed with antibodies directed against specific domains in the molecule. J. Histochem. Cytochem. 40: 343–352, https://doi.org/10.1177/40.3.1372630.Search in Google Scholar PubMed

Nobles, K.N., Guan, Z., Xiao, K., Oas, T.G., and Lefkowitz, R.J. (2007). The active conformation of beta-arrestin1: direct evidence for the phosphate sensor in the N-domain and conformational differences in the active states of beta-arrestins1 and -2. J. Biol. Chem. 282: 21370–21381, https://doi.org/10.1074/jbc.m611483200.Search in Google Scholar

Nobles, K.N., Xiao, K., Ahn, S., Shukla, A.K., Lam, C.M., Rajagopal, S., Strachan, R.T., Huang, T.Y., Bressler, E.A., Hara, M.R., et al.. (2011). Distinct phosphorylation sites on the β(2)-adrenergic receptor establish a barcode that encodes differential functions of beta-arrestin. Sci. Signal. 4: ra51, https://doi.org/10.1126/scisignal.2001707.Search in Google Scholar PubMed PubMed Central

Oakley, R.H., Laporte, S.A., Holt, J.A., Barak, L.S., and Caron, M.G. (1999). Association of beta-arrestin with G protein-coupled receptors during clathrin-mediated endocytosis dictates the profile of receptor resensitization. J. Biol. Chem. 274: 32248–32257, https://doi.org/10.1074/jbc.274.45.32248.Search in Google Scholar PubMed

Oakley, R.H., Laporte, S.A., Holt, J.A., Caron, M.G., and Barak, L.S. (2000). Differential affinities of visual arrestin, beta arrestin1, and beta arrestin2 for G protein-coupled receptors delineate two major classes of receptors. J. Biol. Chem. 275: 17201–17210, https://doi.org/10.1074/jbc.m910348199.Search in Google Scholar

Oishi, A., Dam, J., and Jockers, R. (2020). β-Arrestin-2 BRET biosensors detect different β-arrestin-2 conformations in interaction with GPCRs. ACS Sens. 5: 57–64, https://doi.org/10.1021/acssensors.9b01414.Search in Google Scholar PubMed

Onorato, J.J., Palczewski, K., Regan, J.W., Caron, M.G., Lefkowitz, R.J., and Benovic, J.L. (1991). Role of acidic amino acids in peptide substrates of the beta-adrenergic receptor kinase and rhodopsin kinase. Biochemistry 30: 5118–5125, https://doi.org/10.1021/bi00235a002.Search in Google Scholar PubMed

Park, J.H., Scheerer, P., Hofmann, K.P., Choe, H.W., and Ernst, O.P. (2008). Crystal structure of the ligand-free G-protein-coupled receptor opsin. Nature 454: 183–187, https://doi.org/10.1038/nature07063.Search in Google Scholar PubMed

Park, J.Y., Qu, C.X., Li, R.R., Yang, F., Yu, X., Tian, Z.M., Shen, Y.M., Cai, B.Y., Yun, Y., Sun, J.P., et al.. (2019). Structural mechanism of the arrestin-3/JNK3 interaction. Structure 27: 1162–1170, https://doi.org/10.1016/j.str.2019.04.002.Search in Google Scholar

Parruti, G., Peracchia, F., Sallese, M., Ambrosini, G., Masini, M., Rotilio, D., and De Blasi, A. (1993). Molecular analysis of human beta-arrestin-1: cloning, tissue distribution, and regulation of expression. Identification of two isoforms generated by alternative splicing. J. Biol. Chem. 268: 9753–9761, https://doi.org/10.1016/s0021-9258(18)98412-7.Search in Google Scholar

Pearse, B.M. (1976). Clathrin: a unique protein associated with intracellular transfer of membrane by coated vesicles. Proc. Natl. Acad. Sci. U. S. A. 73: 1255–1259, https://doi.org/10.1073/pnas.73.4.1255.Search in Google Scholar PubMed PubMed Central

Pfister, C., Chabre, M., Plouet, J., Tuyen, V.V., De Kozak, Y., Faure, J.P., and Kühn, H. (1985). Retinal S antigen identified as the 48K protein regulating light-dependent phosphodiesterase in rods. Science 228: 891–893, https://doi.org/10.1126/science.2988124.Search in Google Scholar PubMed

Piekielna-Ciesielska, J., Artali, R., Azzam, A.A.H., Lambert, D.G., Kluczyk, A., Gentilucci, L., and Janecka, A. (2020). Pharmacological characterization of micro-opioid receptor agonists with biased G protein or beta-arrestin signaling, and computational study of conformational changes during receptor activation. Molecules 26: 13, https://doi.org/10.3390/molecules26010013.Search in Google Scholar PubMed PubMed Central

Pitcher, J.A., Payne, E.S., Csortos, C., Depaoli-Roach, A.A., and Lefkowitz, R.J. (1995). The G-protein-coupled receptor phosphatase: a protein phosphatase type 2A with a distinct subcellular distribution and substrate specificity. Proc. Natl. Acad. Sci. U. S. A. 92: 8343–8347, https://doi.org/10.1073/pnas.92.18.8343.Search in Google Scholar PubMed PubMed Central

Rasmussen, S.G., Devree, B.T., Zou, Y., Kruse, A.C., Chung, K.Y., Kobilka, T.S., Thian, F.S., Chae, P.S., Pardon, E., Calinski, D., et al.. (2011). Crystal structure of the β2 adrenergic receptor-Gs protein complex. Nature 477: 549–555, https://doi.org/10.1038/nature10361.Search in Google Scholar PubMed PubMed Central

Ren, X.R., Reiter, E., Ahn, S., Kim, J., Chen, W., and Lefkowitz, R.J. (2005). Different G protein-coupled receptor kinases govern G protein and beta-arrestin-mediated signaling of V2 vasopressin receptor. Proc. Natl. Acad. Sci. U. S. A. 102: 1448–1453, https://doi.org/10.1073/pnas.0409534102.Search in Google Scholar PubMed PubMed Central

Reubi, J.C., Gugger, M., Waser, B., and Schaer, J.C. (2001). Y(1)-mediated effect of neuropeptide Y in cancer: breast carcinomas as targets. Canc. Res. 61: 4636–4641.Search in Google Scholar

Ruscica, M., Dozio, E., Boghossian, S., Bovo, G., Martos Riaño, V., Motta, M., and Magni, P. (2006). Activation of the Y1 receptor by neuropeptide Y regulates the growth of prostate cancer cells. Endocrinology 147: 1466–1473, https://doi.org/10.1210/en.2005-0925.Search in Google Scholar PubMed

Sainsbury, A., Baldock, P.A., Schwarzer, C., Ueno, N., Enriquez, R.F., Couzens, M., Inui, A., Herzog, H., and Gardiner, E.M. (2003). Synergistic effects of Y2 and Y4 receptors on adiposity and bone mass revealed in double knockout mice. Mol. Cell Biol. 23: 5225–5233, https://doi.org/10.1128/mcb.23.15.5225-5233.2003.Search in Google Scholar

Scheerer, P., Park, J.H., Hildebrand, P.W., Kim, Y.J., Krauss, N., Choe, H.W., Hofmann, K.P., and Ernst, O.P. (2008). Crystal structure of opsin in its G-protein-interacting conformation. Nature 455: 497–502, https://doi.org/10.1038/nature07330.Search in Google Scholar PubMed

Scheerer, P. and Sommer, M.E. (2017). Structural mechanism of arrestin activation. Curr. Opin. Struct. Biol. 45: 160–169, https://doi.org/10.1016/j.sbi.2017.05.001.Search in Google Scholar PubMed

Seyedabadi, M., Gharghabi, M., Gurevich, E.V., and Gurevich, V.V. (2021). Receptor-arrestin interactions: the GPCR perspective. Biomolecules 11: 218, https://doi.org/10.3390/biom11020218.Search in Google Scholar PubMed PubMed Central

Shenoy, S.K., Mcdonald, P.H., Kohout, T.A., and Lefkowitz, R.J. (2001). Regulation of receptor fate by ubiquitination of activated beta 2-adrenergic receptor and beta-arrestin. Science 294: 1307–1313, https://doi.org/10.1126/science.1063866.Search in Google Scholar PubMed

Shinohara, T., Donoso, L., Wistow, G., Dietzschold, B., Craft, C., and Tao, R. (1987). The structure of bovine retinal S-antigen: sequence analysis and identification of monoclonal antibody epitopes and uveitogenic site. Jpn. J. Ophthalmol. 31: 197–206.Search in Google Scholar

Shukla, A.K., Violin, J.D., Whalen, E.J., Gesty-Palmer, D., Shenoy, S.K., and Lefkowitz, R.J. (2008). Distinct conformational changes in β-arrestin report biased agonism at seven-transmembrane receptors. Proc. Natl. Acad. Sci. U. S. A. 105: 9988–9993, https://doi.org/10.1073/pnas.0804246105.Search in Google Scholar PubMed PubMed Central

Shukla, A.K., Westfield, G.H., Xiao, K., Reis, R.I., Huang, L.Y., Tripathi-Shukla, P., Qian, J., Li, S., Blanc, A., Oleskie, A.N., et al.. (2014). Visualization of arrestin recruitment by a G-protein-coupled receptor. Nature 512: 218–222, https://doi.org/10.1038/nature13430.Search in Google Scholar PubMed PubMed Central

Slosky, L.M., Bai, Y., Toth, K., Ray, C., Rochelle, L.K., Badea, A., Chandrasekhar, R., Pogorelov, V.M., Abraham, D.M., Atluri, N., et al.. (2020). β-arrestin-biased allosteric modulator of NTSR1 selectively attenuates addictive behaviors. Cell 181: 1364–1379 e14, https://doi.org/10.1016/j.cell.2020.04.053.Search in Google Scholar PubMed PubMed Central

Smith, R.D., Hunyady, L., Olivares-Reyes, J.A., Mihalik, B., Jayadev, S., and Catt, K.J. (1998). Agonist-induced phosphorylation of the angiotensin AT1a receptor is localized to a serine/threonine-rich region of its cytoplasmic tail. Mol. Pharmacol. 54: 935–941, https://doi.org/10.1124/mol.54.6.935.Search in Google Scholar PubMed

Smith, W.C., Gurevich, E.V., Dugger, D.R., Vishnivetskiy, S.A., Shelamer, C.L., Mcdowell, J.H., and Gurevich, V.V. (2000). Cloning and functional characterization of salamander rod and cone arrestins. Investig. Ophthalmol. Vis. Sci. 41: 2445–2455.Search in Google Scholar

Söll, R.M., Dinger, M.C., Lundell, I., Larhammer, D., and Beck-Sickinger, A.G. (2001). Novel analogues of neuropeptide Y with a preference for the Y1-receptor. Eur. J. Biochem. 268: 2828–2837, https://doi.org/10.1046/j.1432-1327.2001.02161.x.Search in Google Scholar PubMed

Sommer, M.E., Farrens, D.L., Mcdowell, J.H., Weber, L.A., and Smith, W.C. (2007). Dynamics of arrestin-rhodopsin interactions: loop movement is involved in arrestin activation and receptor binding. J. Biol. Chem. 282: 25560–25568, https://doi.org/10.1074/jbc.m702155200.Search in Google Scholar PubMed

Sriram, K. and Insel, P.A. (2018). G protein-coupled receptors as targets for approved drugs: how many targets and how many drugs? Mol. Pharmacol. 93: 251–258, https://doi.org/10.1124/mol.117.111062.Search in Google Scholar

Staus, D.P., Hu, H., Robertson, M.J., Kleinhenz, A.L.W., Wingler, L.M., Capel, W.D., Latorraca, N.R., Lefkowitz, R.J., and Skiniotis, G. (2020). Structure of the M2 muscarinic receptor-β-arrestin complex in a lipid nanodisc. Nature 579: 297–302, https://doi.org/10.1038/s41586-020-1954-0.Search in Google Scholar

Sterne-Marr, R., Gurevich, V.V., Goldsmith, P., Bodine, R.C., Sanders, C., Donoso, L.A., and Benovic, J.L. (1993). Polypeptide variants of beta-arrestin and arrestin3. J. Biol. Chem. 268: 15640–15648, https://doi.org/10.1016/s0021-9258(18)82304-3.Search in Google Scholar

Sutton, R.B., Vishnivetskiy, S.A., Robert, J., Hanson, S.M., Raman, D., Knox, B.E., Kono, M., Navarro, J., and Gurevich, V.V. (2005). Crystal structure of cone arrestin at 2.3A: evolution of receptor specificity. J. Mol. Biol. 354: 1069–1080, https://doi.org/10.1016/j.jmb.2005.10.023.Search in Google Scholar PubMed

Swaminath, G., Deupi, X., Lee, T.W., Zhu, W., Thian, F.S., Kobilka, T.S., and Kobilka, B. (2005). Probing the beta2 adrenoceptor binding site with catechol reveals differences in binding and activation by agonists and partial agonists. J. Biol. Chem. 280: 22165–22171, https://doi.org/10.1074/jbc.m502352200.Search in Google Scholar

Szczepek, M., Beyriére, F., Hofmann, K.P., Elgeti, M., Kazmin, R., Rose, A., Bartl, F.J., Von Stetten, D., Heck, M., Sommer, M.E., et al.. (2014). Crystal structure of a common GPCR-binding interface for G protein and arrestin. Nat. Commun. 5: 4801, https://doi.org/10.1038/ncomms5801.Search in Google Scholar PubMed PubMed Central

Thomsen, A.R.B., Plouffe, B., Cahill, T.J., Shukla, A.K., Tarrasch, J.T., Dosey, A.M., Kahsai, A.W., Strachan, R.T., Pani, B., Mahoney, J.P., et al.. (2016). GPCR-G protein-β-arrestin super-complex mediates sustained G protein signaling. Cell 166: 907–919, https://doi.org/10.1016/j.cell.2016.07.004.Search in Google Scholar PubMed PubMed Central

Töth, D.J., Töth, J.T., Gulyás, G., Balla, A., Balla, T., Hunyady, L., and Várnai, P. (2012). Acute depletion of plasma membrane phosphatidylinositol 4,5-bisphosphate impairs specific steps in endocytosis of the G-protein-coupled receptor. J. Cell Sci. 125: 2185–2197, https://doi.org/10.1242/jcs.097279.Search in Google Scholar PubMed PubMed Central

Tough, I.R., Holliday, N.D., and Cox, H.M. (2006). Y(4) receptors mediate the inhibitory responses of pancreatic polypeptide in human and mouse colon mucosa. J. Pharmacol. Exp. Therapeut. 319: 20–30, https://doi.org/10.1124/jpet.106.106500.Search in Google Scholar PubMed

Urban, J.D., Clarke, W.P., Von Zastrow, M., Nichols, D.E., Kobilka, B., Weinstein, H., Javitch, J.A., Roth, B.L., Christopoulos, A., Sexton, P.M., et al.. (2007). Functional selectivity and classical concepts of quantitative pharmacology. J. Pharmacol. Exp. Therapeut. 320: 1–13, https://doi.org/10.1124/jpet.106.104463.Search in Google Scholar PubMed

Vishnivetskiy, S.A., Hosey, M.M., Benovic, J.L., and Gurevich, V.V. (2004). Mapping the arrestin-receptor interface. Structural elements responsible for receptor specificity of arrestin proteins. J. Biol. Chem. 279: 1262–1268, https://doi.org/10.1074/jbc.m308834200.Search in Google Scholar PubMed

Vishnivetskiy, S.A., Huh, E.K., Gurevich, E.V., and Gurevich, V.V. (2020). The finger loop as an activation sensor in arrestin. J. Neurochem., https://doi.org/10.1111/jnc.15232 (Epub ahead of print).Search in Google Scholar PubMed PubMed Central

Vishnivetskiy, S.A., Paz, C.L., Schubert, C., Hirsch, J.A., Sigler, P.B., and Gurevich, V.V. (1999). How does arrestin respond to the phosphorylated state of rhodopsin? J. Biol. Chem. 274: 11451–11454, https://doi.org/10.1074/jbc.274.17.11451.Search in Google Scholar PubMed

Vishnivetskiy, S.A., Raman, D., Wei, J., Kennedy, M.J., Hurley, J.B., and Gurevich, V.V. (2007). Regulation of arrestin binding by rhodopsin phosphorylation level. J. Biol. Chem. 282: 32075–32083, https://doi.org/10.1074/jbc.m706057200.Search in Google Scholar PubMed PubMed Central

Vogel, R., Mahalingam, M., Lüdeke, S., Huber, T., Siebert, F., and Sakmar, T.P. (2008). Functional role of the “ionic lock”--an interhelical hydrogen-bond network in family A heptahelical receptors. J. Mol. Biol. 380: 648–655, https://doi.org/10.1016/j.jmb.2008.05.022.Search in Google Scholar PubMed

Wacker, W.B., Donoso, L.A., Kalsow, C.M., Yankeelov, J.A.Jr., and Organisciak, D.T. (1977). Experimental allergic uveitis. Isolation, characterization, and localization of a soluble uveitopathogenic antigen from bovine retina. J. Immunol. 119: 1949–1958.10.4049/jimmunol.119.6.1949Search in Google Scholar

Walker, J.K., Premont, R.T., Barak, L.S., Caron, M.G., and Shetzline, M.A. (1999). Properties of secretin receptor internalization differ from those of the beta(2)-adrenergic receptor. J. Biol. Chem. 274: 31515–31523, https://doi.org/10.1074/jbc.274.44.31515.Search in Google Scholar PubMed

Walther, C., Nagel, S., Gimenez, L.E., Mörl, K., Gurevich, V.V., and Beck-Sickinger, A.G. (2010). Ligand-induced internalization and recycling of the human neuropeptide Y2 receptor is regulated by its carboxyl-terminal tail. J. Biol. Chem. 285: 41578–41590, https://doi.org/10.1074/jbc.m110.162156.Search in Google Scholar PubMed PubMed Central

Wang, Q. and Limbird, L.E. (2002). Regulated interactions of the alpha 2A adrenergic receptor with spinophilin, 14-3-3zeta, and arrestin 3. J. Biol. Chem. 277: 50589–50596, https://doi.org/10.1074/jbc.m208503200.Search in Google Scholar PubMed

Wanka, L., Babilon, S., Burkert, K., Mörl, K., Gurevich, V.V., and Beck-Sickinger, A.G. (2017). C-terminal motif of human neuropeptide Y4 receptor determines internalization and arrestin recruitment. Cell. Signal. 29: 233–239, https://doi.org/10.1016/j.cellsig.2016.11.003.Search in Google Scholar PubMed PubMed Central

Wanka, L., Babilon, S., Kaiser, A., Mörl, K., and Beck-Sickinger, A.G. (2018). Different mode of arrestin-3 binding at the human Y1 and Y2 receptor. Cell. Signal. 50: 58–71, https://doi.org/10.1016/j.cellsig.2018.06.010.Search in Google Scholar PubMed

Weller, M., Virmaux, N., and Mandel, P. (1975). Light-stimulated phosphorylation of rhodopsin in the retina: the presence of a protein kinase that is specific for photobleached rhodopsin. Proc. Natl. Acad. Sci. U. S. A. 72: 381–385, https://doi.org/10.1073/pnas.72.1.381.Search in Google Scholar PubMed PubMed Central

Wess, J., Han, S.J., Kim, S.K., Jacobson, K.A., and Li, J.H. (2008). Conformational changes involved in G-protein-coupled-receptor activation. Trends Pharmacol. Sci. 29: 616–625, https://doi.org/10.1016/j.tips.2008.08.006.Search in Google Scholar PubMed PubMed Central

White, K.L., Scopton, A.P., Rives, M.L., Bikbulatov, R.V., Polepally, P.R., Brown, P.J., Kenakin, T., Javitch, J.A., Zjawiony, J.K., and Roth, B.L. (2014). Identification of novel functionally selective kappa-opioid receptor scaffolds. Mol. Pharmacol. 85: 83–90, https://doi.org/10.1124/mol.113.089649.Search in Google Scholar PubMed PubMed Central

Wilden, U., Hall, S.W., and Kühn, H. (1986). Phosphodiesterase activation by photoexcited rhodopsin is quenched when rhodopsin is phosphorylated and binds the intrinsic 48-kDa protein of rod outer segments. Proc. Natl. Acad. Sci. U.S.A. 83: 1174–1178, https://doi.org/10.1073/pnas.83.5.1174.Search in Google Scholar PubMed PubMed Central

Wilden, U. and Kühn, H. (1982). Light-dependent phosphorylation of rhodopsin: number of phosphorylation sites. Biochemistry 21: 3014–3022, https://doi.org/10.1021/bi00541a032.Search in Google Scholar PubMed

Wittrisch, S., Klöting, N., Mörl, K., Chakaroun, R., Blüher, M., and Beck-Sickinger, A.G. (2020). NPY1R-targeted peptide-mediated delivery of a dual PPARalpha/gamma agonist to adipocytes enhances adipogenesis and prevents diabetes progression. Mol. Metab. 31: 163–180, https://doi.org/10.1016/j.molmet.2019.11.009.Search in Google Scholar PubMed PubMed Central

Yang, F., Yu, X., Liu, C., Qu, C.X., Gong, Z., Liu, H.D., Li, F.H., Wang, H.M., He, D.F., Yi, F., et al.. (2015). Phospho-selective mechanisms of arrestin conformations and functions revealed by unnatural amino acid incorporation and (19)F-NMR. Nat. Commun. 6: 8202, https://doi.org/10.1038/ncomms9202.Search in Google Scholar PubMed PubMed Central

Yao, X., Parnot, C., Deupi, X., Ratnala, V.R., Swaminath, G., Farrens, D., and Kobilka, B. (2006). Coupling ligand structure to specific conformational switches in the beta2-adrenoceptor. Nat. Chem. Biol. 2: 417–422, https://doi.org/10.1038/nchembio801.Search in Google Scholar PubMed

Yoshida, N., Jojima, E., Saito, H., and Haga, T. (2014). Role of the third intracellular loop in the subtype-specific internalization and recycling of muscarinic M2 and M4 receptors. Biomed. Res. 35: 185–192, https://doi.org/10.2220/biomedres.35.185.Search in Google Scholar PubMed

Zhan, X., Gimenez, L.E., Gurevich, V.V., and Spiller, B.W. (2011). Crystal structure of arrestin-3 reveals the basis of the difference in receptor binding between two non-visual subtypes. J. Mol. Biol. 406: 467–478, https://doi.org/10.1016/j.jmb.2010.12.034.Search in Google Scholar PubMed PubMed Central

Zhang, J., Barak, L.S., Anborgh, P.H., Laporte, S.A., Caron, M.G., and Ferguson, S.S. (1999). Cellular trafficking of G protein-coupled receptor/beta-arrestin endocytic complexes. J. Biol. Chem. 274: 10999–11006, https://doi.org/10.1074/jbc.274.16.10999.Search in Google Scholar PubMed

Zheng, C., Tholen, J., and Gurevich, V.V. (2019). Critical role of the finger loop in arrestin binding to the receptors. PloS One 14: e0213792, https://doi.org/10.1371/journal.pone.0213792.Search in Google Scholar PubMed PubMed Central

Zhou, X.E., He, Y., De Waal, P.W., Gao, X., Kang, Y., Van Eps, N., Yin, Y., Pal, K., Goswami, D., White, T.A., et al.. (2017). Identification of phosphorylation codes for arrestin recruitment by G protein-coupled receptors. Cell 170: 457–469, https://doi.org/10.1016/j.cell.2017.07.002.Search in Google Scholar PubMed PubMed Central

Ziffert, I., Kaiser, A., Hoppenz, P., Mörl, K., and Beck-Sickinger, A.G. (2021). Shuttling of peptide-drug conjugates by G protein-coupled receptors is significantly improved by pulsed application. ChemMedChem 16: 164–178, https://doi.org/10.1002/cmdc.202000490.Search in Google Scholar PubMed PubMed Central

Received: 2021-01-29
Accepted: 2021-04-28
Published Online: 2021-05-26
Published in Print: 2022-01-27

© 2021 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 23.4.2024 from https://www.degruyter.com/document/doi/10.1515/hsz-2021-0128/html
Scroll to top button