Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter August 28, 2014

Interaction of circadian and stress systems in the regulation of adipose physiology

  • Anthony H. Tsang , Isa Kolbe , Julia Seemann and Henrik Oster EMAIL logo

Abstract

Endogenous circadian clocks facilitate the adaptation of physiology and behavior to recurring environmental changes brought about by the Earth’s rotation around its axis. Adipose tissues harbor intrinsic circadian oscillators based on interlocked transcriptional-translational feedback loops built from a set of clock genes that regulate important aspects of lipid metabolism and adipose endocrine function. These adipocyte clocks are reset via neuronal and endocrine pathways originating from a master circadian pacemaker residing in the hypothalamic suprachiasmatic nucleus. One important mediator of circadian output is the stress hormone cortisol, which, at the same time, is one of the major regulators of adipose physiology. In this review we summarize recent findings on the interaction between circadian and stress systems in the regulation of adipose physiology and discuss the implications of this crosstalk for the development of metabolic disorders associated with circadian disruption and/or chronic stress, for example in shift workers.


Corresponding author: Henrik Oster, Chronophysiology Group, Medical Department I, University of Lübeck, Germany, E-mail:

Acknowledgments

H.O. is a Lichtenberg fellow of the Volkswagen Foundation. I.K. is funded by the German Research Foundation (GRK 1957). A.T. is funded by the Göttingen Graduate School for Neurosciences and Molecular Biology (GGNB).

Funding

Deutsche Forschungsgemeinschaft, (Grant/Award Number: ‘GRK 1957 (IK)’) Volkswagen Foundation, (Grant/Award Number: ‘Lichtenberg fellowship (HO)’) Georg-August-Universität Göttingen, (Grant/Award Number: ‘GGNB Excellence stipend (AHT)’).

References

1. Panda S, Hogenesch JB, Kay SA. Circadian rhythms from flies to human. Nature 2002;417:329–35.10.1038/417329aSearch in Google Scholar PubMed

2. Reppert SM, Weaver DR. Coordination of circadian timing in mammals. Nature 2002;418:935–41.10.1038/nature00965Search in Google Scholar PubMed

3. Akerstedt T, Fredlund P, Gillberg M, Jansson B. A prospective study of fatal occupational accidents – relationship to sleeping difficulties and occupational factors. J Sleep Res 2002;11:69–71.10.1046/j.1365-2869.2002.00287.xSearch in Google Scholar PubMed

4. Folkard S, Lombardi DA, Tucker PT. Shiftwork: safety, sleepiness and sleep. Ind Health 2005;43:20–3.10.2486/indhealth.43.20Search in Google Scholar PubMed

5. Folkard S, Tucker P. Shift work, safety and productivity. Occup Med (Lond) 2003;53:95–101.10.1093/occmed/kqg047Search in Google Scholar PubMed

6. Nagaya T, Yoshida H, Takahashi H, Kawai M. Markers of insulin resistance in day and shift workers aged 30–59 years. Int Arch Occup Environ Health 2002;75:562–8.10.1007/s00420-002-0370-0Search in Google Scholar PubMed

7. Simon C, Weibel L, Brandenberger G. Twenty-four-hour rhythms of plasma glucose and insulin secretion rate in regular night workers. Am J Physiol Endocrinol Metab 2000;278:E413–20.10.1152/ajpendo.2000.278.3.E413Search in Google Scholar PubMed

8. Lund J, Arendt J, Hampton SM, English J, Morgan LM. Postprandial hormone and metabolic responses amongst shift workers in Antarctica. J Endocrinol 2001;171:557–64.10.1677/joe.0.1710557Search in Google Scholar PubMed

9. Pan A, Schernhammer ES, Sun Q, Hu FB. Rotating night shift work and risk of type 2 diabetes: two prospective cohort studies in women. PLoS Med 2011;8:e1001141.10.1371/journal.pmed.1001141Search in Google Scholar PubMed PubMed Central

10. Marquezea EC, Lemosa LC, Soaresa N, Lorenzi-Filhob G, Morenoa CR. Weight gain in relation to night work among nurses. Work 2012;41(Suppl 1):2043–8.10.3233/WOR-2012-0429-2043Search in Google Scholar PubMed

11. Garaulet M, Ordovas JM, Madrid JA. The chronobiology, etiology and pathophysiology of obesity. Int J Obes (Lond) 2010;34:1667–83.10.1038/ijo.2010.118Search in Google Scholar

12. Burioka N, Fukuoka Y, Takata M, Endo M, Miyata M, Chikumi H, Tomita K, Kodani M, Touge H, Takeda K, Sumikawa T, Yamaguchi K, Ueda Y, Nakazaki H, Suyama H, Yamasaki A, Sano H, Igishi T, Shimizu E. Circadian rhythms in the CNS and peripheral clock disorders: function of clock genes: influence of medication for bronchial asthma on circadian gene. J Pharmacol Sci 2007;103:144–9.10.1254/jphs.FMJ06003X4Search in Google Scholar

13. Maron BJ, Kogan J, Proschan MA, Hecht GM, Roberts WC. Circadian variability in the occurrence of sudden cardiac death in patients with hypertrophic cardiomyopathy. J Am Coll Cardiol 1994;23:1405–9.10.1016/0735-1097(94)90384-0Search in Google Scholar

14. Bremner WF, Sothern RB, Kanabrocki EL, Ryan M, McCormick JB, Dawson S, Connors ES, Rothschild R, Third JL, Vahed S, Nemchausky BM, Shirazi P, Olwin JH. Relation between circadian patterns in levels of circulating lipoprotein(a), fibrinogen, platelets, and related lipid variables in men. Am Heart J 2000;139 (1 Pt 1):164–73.10.1016/S0002-8703(00)90324-7Search in Google Scholar

15. Staels B. When the Clock stops ticking, metabolic syndrome explodes. Nat Med 2006;12:54–5; discussion 5.10.1038/nm0106-54Search in Google Scholar PubMed

16. Janssen D, Nachreiner F. Health and psychosocial effects of flexible working hours. Rev Saude Publica 2004;38(Suppl): 11–8.10.1590/S0034-89102004000700003Search in Google Scholar PubMed

17. Kaliterna LL, Prizmic LZ, Zganec N. Quality of life, life satisfaction and happiness in shift- and non-shiftworkers. Rev Saude Publica 2004;38(Suppl):3–10.10.1590/S0034-89102004000700002Search in Google Scholar

18. Tepas DI, Barnes-Farrell JL, Bobko N, Fischer FM, Iskra-Golec I, Kaliterna L. The impact of night work on subjective reports of well-being: an exploratory study of health care workers from five nations. Rev Saude Publica 2004;38(Suppl):26–31.10.1590/S0034-89102004000700005Search in Google Scholar

19. Zee PC, Goldstein CA. Treatment of shift work disorder and jet lag. Curr Treat Options Neurol 2010;12:396–411.10.1007/s11940-010-0090-9Search in Google Scholar PubMed

20. Despres JP. Body fat distribution and risk of cardiovascular disease: an update. Circulation 2012;126:1301–13.10.1161/CIRCULATIONAHA.111.067264Search in Google Scholar PubMed

21. van der Spek R, Kreier F, Fliers E, Kalsbeek A. Circadian rhythms in white adipose tissue. Prog Brain Res 2012;199:183–201.10.1016/B978-0-444-59427-3.00011-3Search in Google Scholar PubMed

22. Froy O. Circadian rhythms and obesity in mammals. ISRN Obes 2012;2012:437198.10.5402/2012/437198Search in Google Scholar PubMed PubMed Central

23. Cook A, Cowan C. Adipose. Cambridge, MA: StemBook, 2008.10.3824/stembook.1.40.1Search in Google Scholar PubMed

24. Bartelt A, Heeren J. Adipose tissue browning and metabolic health. Nat Rev Endocrinol 2014;10:24–36.10.1038/nrendo.2013.204Search in Google Scholar PubMed

25. Hassan M, Latif N, Yacoub M. Adipose tissue: friend or foe? Nat Rev Cardiol 2012;9:689–702.10.1038/nrcardio.2012.148Search in Google Scholar PubMed

26. Jensen MD. Role of body fat distribution and the metabolic complications of obesity. J Clin Endocrinol Metab 2008;93(11 Suppl 1):S57–63.10.1210/jc.2008-1585Search in Google Scholar PubMed PubMed Central

27. Sinha R, Jastreboff AM. Stress as a common risk factor for obesity and addiction. Biol Psychiatry 2013;73:827–35.10.1016/j.biopsych.2013.01.032Search in Google Scholar PubMed PubMed Central

28. Ukai-Tadenuma M, Kasukawa T, Ueda HR. Proof-by-synthesis of the transcriptional logic of mammalian circadian clocks. Nat Cell Biol 2008;10:1154–63.10.1038/ncb1775Search in Google Scholar PubMed

29. Brown SA, Kowalska E, Dallmann R. (Re)inventing the circadian feedback loop. Dev Cell 2012;22:477–87.10.1016/j.devcel.2012.02.007Search in Google Scholar PubMed

30. Welsh DK, Takahashi JS, Kay SA. Suprachiasmatic nucleus: cell autonomy and network properties. Ann Rev Physiol 2010;72:551–77.10.1146/annurev-physiol-021909-135919Search in Google Scholar PubMed PubMed Central

31. Dibner C, Schibler U, Albrecht U. The mammalian circadian timing system: organization and coordination of central and peripheral clocks. Ann Rev Physiol 2010;72:517–49.10.1146/annurev-physiol-021909-135821Search in Google Scholar

32. Akhtar RA, Reddy AB, Maywood ES, Clayton JD, King VM, Smith AG, Gant TW, Hastings MH, Kyriacou CP. Circadian cycling of the mouse liver transcriptome, as revealed by cDNA microarray, is driven by the suprachiasmatic nucleus. Curr Biol 2002;12:540–50.10.1016/S0960-9822(02)00759-5Search in Google Scholar

33. Yamazaki S, Numano R, Abe M, Hida A, Takahashi R, Ueda M, Block GD, Sakaki Y, Menaker M, Tei H. Resetting central and peripheral circadian oscillators in transgenic rats. Science 2000;288:682–5.10.1126/science.288.5466.682Search in Google Scholar PubMed

34. Yoo SH, Yamazaki S, Lowrey PL, Shimomura K, Ko CH, Buhr ED, Siepka SM, Hong HK, Oh WJ, Yoo OJ, Menaker M, Takahashi JS. PERIOD2::LUCIFERASE real-time reporting of circadian dynamics reveals persistent circadian oscillations in mouse peripheral tissues. Proc Natl Acad Sci USA 2004;101:5339–46.10.1073/pnas.0308709101Search in Google Scholar PubMed PubMed Central

35. Liu AC, Welsh DK, Ko CH, Tran HG, Zhang EE, Priest AA, Buhr ED, Singer O, Meeker K, Verma IM, Doyle FJ, 3rd, Takahashi JS, Kay SA. Intercellular coupling confers robustness against mutations in the SCN circadian clock network. Cell 2007;129:605–16.10.1016/j.cell.2007.02.047Search in Google Scholar PubMed PubMed Central

36. Partch CL, Green CB, Takahashi JS. Molecular architecture of the mammalian circadian clock. Trends Cell Biol 2014;24:90–9.10.1016/j.tcb.2013.07.002Search in Google Scholar PubMed PubMed Central

37. Damiola F, Le Minh N, Preitner N, Kornmann B, Fleury-Olela F, Schibler U. Restricted feeding uncouples circadian oscillators in peripheral tissues from the central pacemaker in the suprachiasmatic nucleus. Genes Dev 2000;14:2950–61.10.1101/gad.183500Search in Google Scholar PubMed PubMed Central

38. Zvonic S, Ptitsyn AA, Conrad SA, Scott LK, Floyd ZE, Kilroy G, Wu X, Goh BC, Mynatt RL, Gimble JM. Characterization of peripheral circadian clocks in adipose tissues. Diabetes 2006;55:962–70.10.2337/diabetes.55.04.06.db05-0873Search in Google Scholar PubMed

39. Gomez-Santos C, Gomez-Abellan P, Madrid JA, Hernandez-Morante JJ, Lujan JA, Ordovas JM, Garaulet M. Circadian rhythm of clock genes in human adipose explants. Obesity (Silver Spring) 2009;17:1481–5.10.1038/oby.2009.164Search in Google Scholar PubMed PubMed Central

40. Shostak A, Meyer-Kovac J, Oster H. Circadian regulation of lipid mobilization in white adipose tissues. Diabetes 2013;62: 2195–203.10.2337/db12-1449Search in Google Scholar PubMed PubMed Central

41. Shimba S, Ogawa T, Hitosugi S, Ichihashi Y, Nakadaira Y, Kobayashi M, Tezuka M, Kosuge Y, Ishige K, Ito Y, Komiyama K, Okamatsu-Ogura Y, Kimura K, Saito M. Deficient of a clock gene, brain and muscle Arnt-like protein-1 (BMAL1), induces dyslipidemia and ectopic fat formation. PLoS One 2011;6:e25231.10.1371/journal.pone.0025231Search in Google Scholar PubMed PubMed Central

42. Asterholm IW, Scherer PE. Metabolic jet lag when the fat clock is out of sync. Nat Med 2012;18:1738–40.10.1038/nm.3010Search in Google Scholar PubMed PubMed Central

43. Shimba S, Ishii N, Ohta Y, Ohno T, Watabe Y, Hayashi M, Wada T, Aoyagi T, Tezuka M. Brain and muscle Arnt-like protein-1 (BMAL1), a component of the molecular clock, regulates adipogenesis. Proc Natl Acad Sci USA 2005;102:12071–6.10.1073/pnas.0502383102Search in Google Scholar PubMed PubMed Central

44. Gavrila A, Peng CK, Chan JL, Mietus JE, Goldberger AL, Mantzoros CS. Diurnal and ultradian dynamics of serum adiponectin in healthy men: comparison with leptin, circulating soluble leptin receptor, and cortisol patterns. J Clin Endocrinol Metab 2003;88:2838–43.10.1210/jc.2002-021721Search in Google Scholar PubMed

45. Cao H. Adipocytokines in obesity and metabolic disease. J Endocrinol 2014;220:T47–59.10.1530/JOE-13-0339Search in Google Scholar PubMed PubMed Central

46. Friedman JM, Halaas JL. Leptin and the regulation of body weight in mammals. Nature 1998;395:763–70.10.1038/27376Search in Google Scholar PubMed

47. Schwartz MW, Woods SC, Porte D, Jr., Seeley RJ, Baskin DG. Central nervous system control of food intake. Nature 2000;404:661–71.10.1038/35007534Search in Google Scholar PubMed

48. Kalsbeek A, Fliers E, Romijn JA, La Fleur SE, Wortel J, Bakker O, Endert E, Buijs RM. The suprachiasmatic nucleus generates the diurnal changes in plasma leptin levels. Endocrinology 2001;142:2677–85.10.1210/endo.142.6.8197Search in Google Scholar PubMed

49. Marqueze EC, Ulhoa MA, Moreno CR. Irregular working times and metabolic disorders among truck drivers: a review. Work 2012;41(Suppl 1):3718–25.10.3233/WOR-2012-0085-3718Search in Google Scholar PubMed

50. Lucassen EA, Rother KI, Cizza G. Interacting epidemics? Sleep curtailment, insulin resistance, and obesity. Ann NY Acad Sci 2012;1264:110–34.10.1111/j.1749-6632.2012.06655.xSearch in Google Scholar PubMed PubMed Central

51. Gomez-Abellan P, Gomez-Santos C, Madrid JA, Milagro FI, Campion J, Martinez JA, Ordovas JM, Garaulet M. Circadian expression of adiponectin and its receptors in human adipose tissue. Endocrinology 2010;151:115–22.10.1210/en.2009-0647Search in Google Scholar PubMed PubMed Central

52. Scheer FA, Chan JL, Fargnoli J, Chamberland J, Arampatzi K, Shea SA, Blackburn GL, Mantzoros CS. Day/night variations of high-molecular-weight adiponectin and lipocalin-2 in healthy men studied under fed and fasted conditions. Diabetologia 2010;53:2401–5.10.1007/s00125-010-1869-7Search in Google Scholar PubMed PubMed Central

53. Barnea M, Madar Z, Froy O. High-fat diet followed by fasting disrupts circadian expression of adiponectin signaling pathway in muscle and adipose tissue. Obesity (Silver Spring) 2010;18:230–8.10.1038/oby.2009.276Search in Google Scholar PubMed

54. Oliver P, Ribot J, Rodriguez AM, Sanchez J, Pico C, Palou A. Resistin as a putative modulator of insulin action in the daily feeding/fasting rhythm. Pflugers Archiv 2006;452:260–7.10.1007/s00424-005-0034-5Search in Google Scholar PubMed

55. Gomez Abellan P, Gomez Santos C, Madrid JA, Milagro FI, Campion J, Martinez JA, Lujan JA, Ordovas JM, Garaulet M. Site-specific circadian expression of leptin and its receptor in human adipose tissue. Nutricion Hospitalaria 2011;26:1394–401.Search in Google Scholar

56. Benedict C, Shostak A, Lange T, Brooks SJ, Schioth HB, Schultes B, Born J, Oster H, Hallschmid M. Diurnal rhythm of circulating nicotinamide phosphoribosyltransferase (Nampt/visfatin/PBEF): impact of sleep loss and relation to glucose metabolism. J Clin Endocrinol Metab 2012;97:E218–22.10.1210/jc.2011-2241Search in Google Scholar PubMed

57. Bray MS, Young ME. Circadian rhythms in the development of obesity: potential role for the circadian clock within the adipocyte. Obesity Rev 2007;8:169–81.10.1111/j.1467-789X.2006.00277.xSearch in Google Scholar PubMed

58. Ando H, Yanagihara H, Hayashi Y, Obi Y, Tsuruoka S, Takamura T, Kaneko S, Fujimura A. Rhythmic messenger ribonucleic acid expression of clock genes and adipocytokines in mouse visceral adipose tissue. Endocrinology 2005;146:5631–6.10.1210/en.2005-0771Search in Google Scholar PubMed

59. Butruille L, Drougard A, Knauf C, Moitrot E, Valet P, Storme L, Deruelle P, Lesage J. The apelinergic system: sexual dimorphism and tissue-specific modulations by obesity and insulin resistance in female mice. Peptides 2013;46:94–101.10.1016/j.peptides.2013.05.013Search in Google Scholar PubMed

60. Parlee SD, Ernst MC, Muruganandan S, Sinal CJ, Goralski KB. Serum chemerin levels vary with time of day and are modified by obesity and tumor necrosis factor-{alpha}. Endocrinology 2010;151:2590–602.10.1210/en.2009-0794Search in Google Scholar PubMed

61. To H, Irie S, Tomonari M, Watanabe Y, Kitahara T, Sasaki H. Therapeutic index of methotrexate depends on circadian cycling of tumour necrosis factor-alpha in collagen-induced arthritic rats and mice. J Pharm Pharmacol 2009;61:1333–8.10.1211/jpp.61.10.0009Search in Google Scholar

62. Cano P, Cardinali DP, Rios-Lugo MJ, Fernandez-Mateos MP, Reyes Toso CF, Esquifino AI. Effect of a high-fat diet on 24-hour pattern of circulating adipocytokines in rats. Obesity (Silver Spring) 2009;17:1866–71.10.1038/oby.2009.200Search in Google Scholar PubMed

63. Guan Z, Vgontzas AN, Omori T, Peng X, Bixler EO, Fang J. Interleukin-6 levels fluctuate with the light-dark cycle in the brain and peripheral tissues in rats. Brain Behav Immun 2005;19:526–9.10.1016/j.bbi.2005.01.005Search in Google Scholar PubMed

64. Vgontzas AN, Bixler EO, Lin HM, Prolo P, Trakada G, Chrousos GP. IL-6 and its circadian secretion in humans. Neuroimmunomodulation 2005;12:131–40.10.1159/000084844Search in Google Scholar PubMed

65. Oishi K. Plasminogen activator inhibitor-1 and the circadian clock in metabolic disorders. Clin Exp Hypertens 2009;31:208–19.10.1080/10641960902822468Search in Google Scholar PubMed

66. Hayashida S, Kuramoto Y, Koyanagi S, Oishi K, Fujiki J, Matsunaga N, Ikeda E, Ohdo S, Shimeno H, Soeda S. Proxisome proliferator-activated receptor-alpha mediates high-fat, diet-enhanced daily oscillation of plasminogen activator inhibitor-1 activity in mice. Chronobiol Int 2010;27:1735–53.10.3109/07420528.2010.515324Search in Google Scholar PubMed

67. Joels M, Baram TZ. The neuro-symphony of stress. Nat Rev Neurosci 2009;10:459–66.10.1038/nrn2632Search in Google Scholar PubMed PubMed Central

68. Ulrich-Lai YM, Herman JP. Neural regulation of endocrine and autonomic stress responses. Nat Rev Neurosci 2009;10: 397–409.10.1038/nrn2647Search in Google Scholar PubMed PubMed Central

69. Ratman D, Vanden Berghe W, Dejager L, Libert C, Tavernier J, Beck IM, De Bosscher K. How glucocorticoid receptors modulate the activity of other transcription factors: a scope beyond tethering. Mol Cell Endocrinol 2013;380(1–2):41–54.10.1016/j.mce.2012.12.014Search in Google Scholar PubMed

70. Surjit M, Ganti KP, Mukherji A, Ye T, Hua G, Metzger D, Li M, Chambon P. Widespread negative response elements mediate direct repression by agonist-liganded glucocorticoid receptor. Cell 2011;145:224–41.10.1016/j.cell.2011.03.027Search in Google Scholar PubMed

71. Hryhorczuk C, Sharma S, Fulton SE. Metabolic disturbances connecting obesity and depression. Front Neurosci 2013;7:177.10.3389/fnins.2013.00177Search in Google Scholar PubMed PubMed Central

72. Lee MJ, Pramyothin P, Karastergiou K, Fried SK. Deconstructing the roles of glucocorticoids in adipose tissue biology and the development of central obesity. Biochim Biophys Acta 2014;1842:473–81.10.1016/j.bbadis.2013.05.029Search in Google Scholar PubMed PubMed Central

73. Mazziotti G, Gazzaruso C, Giustina A. Diabetes in Cushing syndrome: basic and clinical aspects. Trends Endocrinol Metab 2011;22:499–506.10.1016/j.tem.2011.09.001Search in Google Scholar PubMed

74. Rebuffe-Scrive M, Krotkiewski M, Elfverson J, Bjorntorp P. Muscle and adipose tissue morphology and metabolism in Cushing’s syndrome. J Clin Endocrinol Metab 1988;67:1122–8.10.1210/jcem-67-6-1122Search in Google Scholar PubMed

75. Freedman MR, Horwitz BA, Stern JS. Effect of adrenalectomy and glucocorticoid replacement on development of obesity. Am J Physiol 1986;250(4 Pt 2):R595–607.10.1152/ajpregu.1986.250.4.R595Search in Google Scholar PubMed

76. Wang JC, Gray NE, Kuo T, Harris CA. Regulation of triglyceride metabolism by glucocorticoid receptor. Cell Biosci 2012;2:19.10.1186/2045-3701-2-19Search in Google Scholar PubMed PubMed Central

77. Peckett AJ, Wright DC, Riddell MC. The effects of glucocorticoids on adipose tissue lipid metabolism. Metab Clin Exper 2011;60:1500–10.10.1016/j.metabol.2011.06.012Search in Google Scholar PubMed

78. Divertie GD, Jensen MD, Miles JM. Stimulation of lipolysis in humans by physiological hypercortisolemia. Diabetes 1991;40:1228–32.10.2337/diab.40.10.1228Search in Google Scholar PubMed

79. Macfarlane DP, Forbes S, Walker BR. Glucocorticoids and fatty acid metabolism in humans: fuelling fat redistribution in the metabolic syndrome. J Endocrinol 2008;197:189–204.10.1677/JOE-08-0054Search in Google Scholar PubMed

80. Williams BH, Berdanier CD. Effects of diet composition and adrenalectomy on the lipogenic responses of rats to starvation-refeeding. J Nutr 1982;112:534–41.10.1093/jn/112.3.534Search in Google Scholar PubMed

81. Strawford A, Antelo F, Christiansen M, Hellerstein MK. Adipose tissue triglyceride turnover, de novo lipogenesis, and cell proliferation in humans measured with 2H2 O. Am J Physiol Endocrinol Metab 2004;286:E577–88.10.1152/ajpendo.00093.2003Search in Google Scholar PubMed

82. Lee MJ, Fried SK. Integration of hormonal and nutrient signals that regulate leptin synthesis and secretion. Am J Physiol Endocrinol Metab 2009;296:E1230–8.10.1152/ajpendo.90927.2008Search in Google Scholar PubMed PubMed Central

83. Huang Q, Rivest R, Richard D. Effects of leptin on corticotropin-releasing factor (CRF) synthesis and CRF neuron activation in the paraventricular hypothalamic nucleus of obese (ob/ob) mice. Endocrinology 1998;139:1524–32.10.1210/endo.139.4.5889Search in Google Scholar PubMed

84. Sukumaran S, Dubois DC, Jusko WJ, Almon RR. Glucocorticoid effects on adiponectin expression. Vitam Horm 2012;90: 163–86.10.1016/B978-0-12-398313-8.00007-5Search in Google Scholar PubMed PubMed Central

85. Zeman M, Jirak R, Jachymova M, Vecka M, Tvrzicka E, Zak A. Leptin, adiponectin, leptin to adiponectin ratio and insulin resistance in depressive women. Neuro Endocrinol Lett 2009;30:387–95.Search in Google Scholar

86. Penicaud L. The neural feedback loop between the brain and adipose tissues. Endocrine Dev 2010;19:84–92.10.1159/000316900Search in Google Scholar PubMed

87. Bartness TJ, Song CK. Brain-adipose tissue neural crosstalk. Physiol Behav 2007;91:343–51.10.1016/j.physbeh.2007.04.002Search in Google Scholar PubMed PubMed Central

88. Bamshad M, Aoki VT, Adkison MG, Warren WS, Bartness TJ. Central nervous system origins of the sympathetic nervous system outflow to white adipose tissue. Am J Physiol 1998;275(1 Pt 2):R291–9.10.1152/ajpregu.1998.275.1.R291Search in Google Scholar PubMed

89. Liu RH, Mizuta M, Matsukura S. The expression and functional role of nicotinic acetylcholine receptors in rat adipocytes. J Pharmacol Exper Ther 2004;310:52–8.10.1124/jpet.103.065037Search in Google Scholar PubMed

90. Kreier F, Fliers E, Voshol PJ, Van Eden CG, Havekes LM, Kalsbeek A, Van Heijningen CL, Sluiter AA, Mettenleiter TC, Romijn JA, Sauerwein HP, Buijs RM. Selective parasympathetic innervation of subcutaneous and intra-abdominal fat – functional implications. J Clin Invest 2002;110:1243–50.10.1172/JCI0215736Search in Google Scholar

91. Stallknecht B, Lorentsen J, Enevoldsen LH, Bulow J, Biering-Sorensen F, Galbo H, Kjaer M. Role of the sympathoadrenergic system in adipose tissue metabolism during exercise in humans. J Physiol 2001;536(Pt 1):283–94.10.1111/j.1469-7793.2001.00283.xSearch in Google Scholar PubMed PubMed Central

92. Nonogaki K. New insights into sympathetic regulation of glucose and fat metabolism. Diabetologia 2000;43:533–49.10.1007/s001250051341Search in Google Scholar PubMed

93. Cammisotto PG, Bukowiecki LJ. Mechanisms of leptin secretion from white adipocytes. Am J Physiol Cell Physiol 2002;283:C244–50.10.1152/ajpcell.00033.2002Search in Google Scholar

94. Turtzo LC, Marx R, Lane MD. Cross-talk between sympathetic neurons and adipocytes in coculture. Proc Natl Acad Sci USA 2001;98:12385–90.10.1073/pnas.231478898Search in Google Scholar

95. Fu L, Isobe K, Zeng Q, Suzukawa K, Takekoshi K, Kawakami Y. beta-adrenoceptor agonists downregulate adiponectin, but upregulate adiponectin receptor 2 and tumor necrosis factor-alpha expression in adipocytes. Eur J Pharmacol 2007;569:155–62.10.1016/j.ejphar.2007.05.005Search in Google Scholar

96. Mohamed-Ali V, Bulmer K, Clarke D, Goodrick S, Coppack SW, Pinkney JH. beta-Adrenergic regulation of proinflammatory cytokines in humans. Int J Obes Relat Metab Disord 2000;24(Suppl 2):S154–5.10.1038/sj.ijo.0801311Search in Google Scholar

97. Vicennati V, Vottero A, Friedman C, Papanicolaou DA. Hormonal regulation of interleukin-6 production in human adipocytes. Int J Obes Relat Metab Disord 2002;26:905–11.10.1038/sj.ijo.0802035Search in Google Scholar

98. Smith MM, Minson CT. Obesity and adipokines: effects on sympathetic overactivity. J Physiol 2012;590(Pt 8):1787–801.10.1113/jphysiol.2011.221036Search in Google Scholar

99. Van Cauter E, Spiegel K, Tasali E, Leproult R. Metabolic consequences of sleep and sleep loss. Sleep Med 2008;9(Suppl 1):S23–8.10.1016/S1389-9457(08)70013-3Search in Google Scholar

100. Albrecht U. Circadian clocks and mood-related behaviors. Handb Exp Pharmacol 2013:227–39.10.1007/978-3-642-25950-0_9Search in Google Scholar PubMed

101. Erren TC, Reiter RJ. Defining chronodisruption. J Pineal Res 2009;46:245–7.10.1111/j.1600-079X.2009.00665.xSearch in Google Scholar PubMed

102. Spiga F, Walker JJ, Terry JR, Lightman SL. HPA Axis-Rhythms. Comp Physiol 2014;4:1273–98.10.1002/cphy.c140003Search in Google Scholar PubMed

103. Moore RY, Eichler VB. Loss of a circadian adrenal corticosterone rhythm following suprachiasmatic lesions in the rat. Brain Res 1972;42:201–6.10.1016/0006-8993(72)90054-6Search in Google Scholar

104. Stephan FK, Zucker I. Circadian rhythms in drinking behavior and locomotor activity of rats are eliminated by hypothalamic lesions. Proc Natl Acad Sci USA 1972;69:1583–6.10.1073/pnas.69.6.1583Search in Google Scholar

105. Buijs RM, Wortel J, Van Heerikhuize JJ, Feenstra MG, Ter Horst GJ, Romijn HJ, Kalsbeek A. Anatomical and functional demonstration of a multisynaptic suprachiasmatic nucleus adrenal (cortex) pathway. Eur J Neurosci 1999;11: 1535–44.10.1046/j.1460-9568.1999.00575.xSearch in Google Scholar

106. Jasper MS, Engeland WC. Splanchnicotomy increases adrenal sensitivity to ACTH in nonstressed rats. Am J Physiol 1997;273(2 Pt 1):E363–8.10.1152/ajpendo.1997.273.2.E363Search in Google Scholar

107. Ishida A, Mutoh T, Ueyama T, Bando H, Masubuchi S, Nakahara D, Tsujimoto G, Okamura H. Light activates the adrenal gland: timing of gene expression and glucocorticoid release. Cell Metab 2005;2:297–307.10.1016/j.cmet.2005.09.009Search in Google Scholar

108. LeGates TA, Altimus CM, Wang H, Lee HK, Yang S, Zhao H, Kirkwood A, Weber ET, Hattar S. Aberrant light directly impairs mood and learning through melanopsin-expressing neurons. Nature 2012;491:594–8.10.1038/nature11673Search in Google Scholar

109. Dickmeis T, Weger BD, Weger M. The circadian clock and glucocorticoids--interactions across many time scales. Mol Cell Endocrinol 2013;380(1–2):2–15.10.1016/j.mce.2013.05.012Search in Google Scholar

110. Oster H, Damerow S, Kiessling S, Jakubcakova V, Abraham D, Tian J, Hoffmann MW, Eichele G. The circadian rhythm of glucocorticoids is regulated by a gating mechanism residing in the adrenal cortical clock. Cell Metab 2006;4: 163–73.10.1016/j.cmet.2006.07.002Search in Google Scholar

111. Son GH, Chung S, Choe HK, Kim HD, Baik SM, Lee H, Lee HW, Choi S, Sun W, Kim H, Cho S, Lee KH, Kim K. Adrenal peripheral clock controls the autonomous circadian rhythm of glucocorticoid by causing rhythmic steroid production. Proc Natl Acad Sci USA 2008;105:20970–5.10.1073/pnas.0806962106Search in Google Scholar

112. Rosenfeld P, Van Eekelen JA, Levine S, De Kloet ER. Ontogeny of the type 2 glucocorticoid receptor in discrete rat brain regions: an immunocytochemical study. Brain Res 1988;470:119–27.10.1016/0165-3806(88)90207-6Search in Google Scholar

113. van Eekelen JA, Bohn MC, de Kloet ER. Postnatal ontogeny of mineralocorticoid and glucocorticoid receptor gene expression in regions of the rat tel- and diencephalon. Brain Res Dev Brain Res 1991;61:33–43.10.1016/0165-3806(91)90111-USearch in Google Scholar

114. Balsalobre A, Brown SA, Marcacci L, Tronche F, Kellendonk C, Reichardt HM, Schutz G, Schibler U. Resetting of circadian time in peripheral tissues by glucocorticoid signaling. Science 2000;289:2344–7.10.1126/science.289.5488.2344Search in Google Scholar PubMed

115. Nader N, Chrousos GP, Kino T. Circadian rhythm transcription factor CLOCK regulates the transcriptional activity of the glucocorticoid receptor by acetylating its hinge region lysine cluster: potential physiological implications. FASEB J 2009;23:1572–83.10.1096/fj.08-117697Search in Google Scholar PubMed PubMed Central

116. Lamia KA, Papp SJ, Yu RT, Barish GD, Uhlenhaut NH, Jonker JW, Downes M, Evans RM. Cryptochromes mediate rhythmic repression of the glucocorticoid receptor. Nature 2011;480:552–6.10.1038/nature10700Search in Google Scholar PubMed PubMed Central

117. Leliavski A, Shostak A, Husse J, Oster H. Impaired glucocorticoid production and response to stress in Arntl-deficient male mice. Endocrinology 2014;155:133–42.10.1210/en.2013-1531Search in Google Scholar PubMed

118. Wagner U, Born J. Memory consolidation during sleep: interactive effects of sleep stages and HPA regulation. Stress 2008;11:28–41.10.1080/10253890701408822Search in Google Scholar PubMed

119. Lasikiewicz N, Hendrickx H, Talbot D, Dye L. Exploration of basal diurnal salivary cortisol profiles in middle-aged adults: associations with sleep quality and metabolic parameters. Psychoneuroendocrinology 2008;33:143–51.10.1016/j.psyneuen.2007.10.013Search in Google Scholar PubMed

120. Therrien F, Drapeau V, Lalonde J, Lupien SJ, Beaulieu S, Tremblay A, Richard D. Awakening cortisol response in lean, obese, and reduced obese individuals: effect of gender and fat distribution. Obesity (Silver Spring) 2007;15:377–85.10.1038/oby.2007.509Search in Google Scholar PubMed

121. Mujica-Parodi LR, Renelique R, Taylor MK. Higher body fat percentage is associated with increased cortisol reactivity and impaired cognitive resilience in response to acute emotional stress. Int J Obes (Lond) 2009;33:157–65.10.1038/ijo.2008.218Search in Google Scholar PubMed

122. Kovac J, Husse J, Oster H. A time to fast, a time to feast: the crosstalk between metabolism and the circadian clock. Mol Cells 2009;28:75–80.10.1007/s10059-009-0113-0Search in Google Scholar PubMed

123. Kohsaka A, Laposky AD, Ramsey KM, Estrada C, Joshu C, Kobayashi Y, Turek FW, Bass J. High-fat diet disrupts behavioral and molecular circadian rhythms in mice. Cell Metab 2007;6:414–21.10.1016/j.cmet.2007.09.006Search in Google Scholar PubMed

124. Eckel-Mahan KL, Patel VR, de Mateo S, Orozco-Solis R, Ceglia NJ, Sahar S, Dilag-Penilla SA, Dyar KA, Baldi P, Sassone-Corsi P. Reprogramming of the circadian clock by nutritional challenge. Cell 2013;155:1464–78.10.1016/j.cell.2013.11.034Search in Google Scholar PubMed PubMed Central

125. Hatori M, Vollmers C, Zarrinpar A, DiTacchio L, Bushong EA, Gill S, Leblanc M, Chaix A, Joens M, Fitzpatrick JA, Ellisman MH, Panda S. Time-restricted feeding without reducing caloric intake prevents metabolic diseases in mice fed a high-fat diet. Cell metabolism 2012;15:848–60.10.1016/j.cmet.2012.04.019Search in Google Scholar PubMed PubMed Central

Received: 2014-7-21
Accepted: 2014-8-8
Published Online: 2014-8-28
Published in Print: 2014-8-1

©2014 by De Gruyter

Downloaded on 25.4.2024 from https://www.degruyter.com/document/doi/10.1515/hmbci-2014-0020/html
Scroll to top button