Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter April 9, 2018

Interactions between PLA, PE and wood flour: effects of compatibilizing agents and ionic liquids

  • Alessia Quitadamo ORCID logo , Valérie Massardier EMAIL logo and Marco Valente
From the journal Holzforschung

Abstract

The differences in hydrophilicity are a main drawback for wood polymer composites (WPCs). This work aims at compatibilizing bio-derived poly(lactic acid) (PLA), high density polyethylene (PE) and wood fibers (WFs) with either functional PEs [PE-graft-maleic anhydride (MA) (Polybond 3029) or random copolymer of ethylene and glycidyl methacrylate (PE-g-GMA) (Lotader AX8840)] or trihexyl(tetradecyl)phosphonium bistriflamide ionic liquid (IL). The interactions and possible chemical reactions between PLA and functional PE or IL were studied including their mechanical properties. PE-g-GMA significantly increased elongation at break of PLA. According to scanning electron microscopy (SEM), the latter also displays good compatibility with WF. Addition of IL plastifies PLA without degrading it and improves the thermal stability of WF.

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: None declared.

  3. Employment or leadership: None declared.

  4. Honorarium: None declared.

References

Askanian, H., Verney, V., Commereuc, S., Guyonnet, R., Massardier, V. (2015) Wood polypropylene composites prepared by thermally modified fibers at two extrusion speeds: mechanical and viscoelastic properties. Holzforschung 69:313–319.10.1515/hf-2014-0031Search in Google Scholar

Ayrilmis, N., Dundar, T., Kaymakci, A., Ozdemir, F., Kwon, J.H. (2014) Mechanical and thermal properties of wood-plastic composites reinforced with hexagonal boron nitride. Polym. Compos. 35:194–200.10.1002/pc.22650Search in Google Scholar

Baiardo, M., Frisoni, G., Scandola, M., Rimelen, M., Lips, D., Ruffieux, K., Wintermantel, W. (2003) Thermal and mechanical properties of plasticized poly(L-lactic acid). J. Appl. Polym. Sci. 90:1731–1738.10.1002/app.12549Search in Google Scholar

Benaniba, M.T., Massardier-Nageotte, V. (2010) Evaluation effects of biobased plasticizer on the thermal, mechanical, dynamical mechanical properties, and permanence of plasticized PVC. J. Appl. Polym. Sci. 118:3499–3508.10.1002/app.32713Search in Google Scholar

Branco, L.C., Carrera, G.V.S.M., Aires-de-Sousa, J., Lopez Martin, I., Frade, R., Afonso, C.A. (2011) Physico-chemical properties of task-specific ionic liquids. In: Ionic Liquids: Theory, Properties, New Approaches. Ed. Kokorin, A. InTech, Zagreb, Croatia. pp. 61–94.Search in Google Scholar

Bugnicourt, E., Cinelli, P., Lazzeri, A., Alvarez, V. (2014) Polyhydroxyalkanoate (PHA): review of synthesis, characteristics, processing and potential applications in packaging. Express Polym. Lett. 8:791–808.10.3144/expresspolymlett.2014.82Search in Google Scholar

Butylina, S., Hyvarinen, M., Karki, T. (2012) A study of surface changes of wood polypropylene composites as the result of exterior weathering. Polym. Degr. Stab. 97:337–345.10.1016/j.polymdegradstab.2011.12.014Search in Google Scholar

Castro-Rosas, J., Cruz-Galvez, A.M., Gomez-Aldapa, C.A., Falfan-Cortes, R.N., Guzman-Ortiz, F.A., Rodrìguez-Marìn, M.L. (2016) Biopolymer films and the effects of added lipids, nanoparticles and antimicrobials on their mechanical and barrier properties: a review. Int. J. Food Sci. Technol. 51:1967–1978.10.1111/ijfs.13183Search in Google Scholar

Chen, B.K., Wu, T.Y., Chang, Y.M., Chen, A.F. (2013) Ductile polylactic acid prepared with ionic liquids. Chem. Eng. J. 215:886–893.10.1016/j.cej.2012.11.078Search in Google Scholar

Choudhury, A. (2008) Isothermal crystallization and mechanical behavior of ionomer treated sisal/HDPE composite. Mat. Sci. Eng. A. 491:492–500.10.1016/j.msea.2008.03.011Search in Google Scholar

Denavi, G.A., Pérez-Mateos, M., Amonn, M.C., Montero, P., Mauri, A.N., Gomez-Guillén, M.C. (2009) Structural and functional properties of soy protein isolate and cod gelatin blend films. Food Hydrocoll. 23:2094–2101.10.1016/j.foodhyd.2009.03.007Search in Google Scholar

Donato, R.K., Benevgnù, M.A., Furlan, L.G., Mauler, R.S., Schrekker, H.S. (2010) Imidazolium salts as liquid coupling agents for the preparation of polypropylene-silica composites. J. Appl. Polym. Sci. 116:304–307.10.1002/app.31531Search in Google Scholar

Freire, C.S.R., Fernandes, S.C.M., Silvestre, A.J.D., Pascoal, N.C. (2013) Novel cellulose-based composites based on nanofibrillated plant and bacterial cellulose: recent advances at the University of Aveiro – a review. Holzforschung 67:603–612.10.1515/hf-2012-0127Search in Google Scholar

Graupner, N., Herrmann, A.S., Müssig, J. (2009) Natural and man-made cellulose fibre-reinforced poly(lactic acid) (PLA) composites: an overview about mechanical characteristics and application areas. Compos. Part A Appl. Sci. Manuf. 40:810–821.10.1016/j.compositesa.2009.04.003Search in Google Scholar

Gregorova, A. (2013) Application of differential scanning calorimetry to the characterization of biopolymers. In: Applications of Calorimetry in a Wide Context-Differential Scanning Calorimetry, Isothermal Titration Calorimetry and Microcalorimetry. Ed. Elkordy, A.A. Intech, Zagreb, Croatia. pp. 3–20.Search in Google Scholar

Gunti, R., Prasad, A.V.R., Gupta, A.V.S.S.K. (2015) Preparation and properties of successive alkali treated completely biodegradable short jute fiber reinforced PLA composites. Polym. Compos. 37:2160–2170.10.1002/pc.23395Search in Google Scholar

Hachemi, R., Belhaneche-Bensemra, N., Massardier, V. (2013) Elaboration and characterization of bioblends based on PVC/PLA. J. Appl. Polym. Sci. 131:40045.10.1002/app.40045Search in Google Scholar

Halley, P.J., Truss, R.W., Markotsis, M.G., Chaleat, C., Russo, M., Sargent, A. (2007) A review of biodegradable thermoplastic starch polymers. In: Polym Durab Radiat Eff. Eds. Celina, M.C., Assink, R.A. ACS, Washington, DC, USA. pp. 287–300.10.1021/bk-2007-0978.ch024Search in Google Scholar

Hietala, M., Niinimaki, J., Oksman, K. (2011) Processing of wood chip-plastic composites: effect on wood particle size, microstructure and mechanical properties. Plast. Rubber Compos. 40:49–56.10.1179/174328911X12988622800855Search in Google Scholar

Huda, M.S., Mohanty, A.K., Drzal, L.T., Schut, E., Misra, M. (2005) ‘Green’ composites from recycled cellulose and poly(lactic acid): physico-mechanical and morphological properties evaluation. J. Mater. Sci. 40:4221–4229.10.1007/s10853-005-1998-4Search in Google Scholar

Ikeda, K., Takatani, M., Sakamoto, K., Okamoto, T. (2008) Development of fully bio-based composite: wood/cellulose diacetate/poly(lactic acid) composite. Holzforschung 62:154–156.10.1515/HF.2008.026Search in Google Scholar

Jacobsen, S., Fritz, H.G. (1999) Plasticizing polylactide – the effect of different plasticizers on the mechanical properties. Polym. Eng. Sci. 39:1303–1310.10.1002/pen.11517Search in Google Scholar

Kim, K.W., Lee, B.H., Kim, H.J., Sriroth, K., Dorgan, J.R. (2012) Thermal and mechanical properties of cassava and pineapple flours-filled PLA bio-composites. J. Therm. Anal. Calorim. 108:1131–1139.10.1007/s10973-011-1350-ySearch in Google Scholar

Koshy, R.R., Mary, S.K., Thomas, S., Pothan, L.A. (2015) Environment friendly green composites based on soy protein isolate – a review. Food Hydrocoll. 50:174–192.10.1016/j.foodhyd.2015.04.023Search in Google Scholar

Liu, R., Luo, S., Cao, J., Chen, Y. (2016) Mechanical properties of wood flour/poly(lactic acid) composites coupled with waterborne silane-polyacrylate copolymer emulsion. Holzforschung 70:439–447.10.1515/hf-2015-0064Search in Google Scholar

Livi, S., Duchet-Rumueau, J., Pham, T.N., Gérard, J.F. (2010) A comparative study on different ionic liquids used as surfactants: effect on thermal and mechanical properties of high-density polyethylene nanocomposites. J. Coll. Inter. Sci. 349:424–443.10.1016/j.jcis.2009.09.036Search in Google Scholar PubMed

Livi, S., Duchet-Rumueau, J., Gérard, J.F. (2011a) Nanostructuration of ionic liquids in fluorinated matrix: influence on the mechanical properties. Polymer 52:1523–1531.10.1016/j.polymer.2011.01.052Search in Google Scholar

Livi, S., Duchet-Rumueau, J., Gérard, J.F. (2011b) Supercritical CO2-ionic liquid mixtures for modification of organoclays. J. Coll. Inter. Sci. 353:225–230.10.1016/j.jcis.2010.09.049Search in Google Scholar PubMed

Livi, S., Duchet-Rumueau, J., Gérard, J.F. (2011c) Synthesis and physical properties of new surfactants based on ionic liquids: improvement of thermal stability and mechanical behavior of high density polyethylene nanocomposites. J. Coll. Inter. Sci. 354:555–562.10.1016/j.jcis.2010.10.058Search in Google Scholar PubMed

Ljungberg, N., Wesslén, B. (2002) The effects of plasticizers on the dynamic mechanical and thermal properties of poly(lactic acid). J. Appl. Polym. Sci. 86:1227–1234.10.1002/app.11077Search in Google Scholar

Louizi, M., Massardier, V., Taha, M., Ayoub, A., Vernhet, L. (2013) New routes of valorization of recycled and bio-sourced polyamides with a low toxicity process. Waste Biomass Valor. 4:47–54.10.1007/s12649-012-9133-7Search in Google Scholar

Luangtana-Anan, M., Limmatvapirat, S., Nunthanid, J., Wanawongthai, C., Chalongsuk, R., Puttipipatkhachorn, S. (2007) Effect of salts and plasticizers on stability of shellac film. J. Agric. Food Chem. 55:687–692.10.1021/jf061922+Search in Google Scholar PubMed

Madhavan Nampoothiri, K., Nair, N.R., John, R.P. (2010) An overview of the recent developments in polylactide (PLA) research. Bioresour. Technol. 191:8493–8501.10.1016/j.biortech.2010.05.092Search in Google Scholar

Maiza, M., Benaniba, M.T., Quintard, G., Massardier-Nageotte, V. (2015) Biobased additive plasticizing polylactic acid (PLA). Polimeros 25:581–590.10.1590/0104-1428.1986Search in Google Scholar

Malkapuram, R., Kumar, V., Negi, Y.S. (2009) Recent development in natural fiber. J. Reinf. Plast. 28:1169–1189.10.1177/0731684407087759Search in Google Scholar

Martin, O., Avérous, L. (2001) Poly(lactic acid): plasticization and properties of biodegradable multiphase systems. Polymer 42:6209–6219.10.1016/S0032-3861(01)00086-6Search in Google Scholar

Mekonnen, T., Mussone, P., Khalil, H., Bressler, D. (2013) Progress in bio-based plastics and plasticizing modifications. J. Mater. Chem. A. 1:13379–13398.10.1039/c3ta12555fSearch in Google Scholar

Migneault, S., Koubaa, A., Erchiqui, F., Chaala, A., Englund, E., Wolcott, M.P. (2009) Effects of processing method and fiber size on the structure and properties of wood-plastic composites. Composites Part A 40:80–85.10.1016/j.compositesa.2008.10.004Search in Google Scholar

Montero De Espinosa, L., Meier, M.A.R. (2011) Plant oils: the perfect renewable resource for polymer science. Eur. Polym. J. 47:837–852.10.1016/j.eurpolymj.2010.11.020Search in Google Scholar

Nair, A., Joseph, R. (2014) Eco-friendly bio-composites using natural rubber (NR) matrices and natural fiber reinforcements. In: Kohjiya Chemistry, Manufacture and Applications of Natural Rubber. Eds. Kohjiya, S., Ikeda, Y. Woodhead Publishing, Cambridge, UK. pp. 249–283.10.1533/9780857096913.2.249Search in Google Scholar

Nyambo, C., Mohanty, A.K., Misra, M. (2010) Polylactide-based renewable green composites from agricultural residues and their hybrids. Biomacromolecules 11:1654–1660.10.1021/bm1003114Search in Google Scholar PubMed

Oksman, K., Skrifvars, M., Selin, J.F. (2003) Natural fibres as reinforcement in polylactic acid (PLA) composites. Compos. Sci. Technol. 63:1317–1324.10.1016/S0266-3538(03)00103-9Search in Google Scholar

Petinakis, E., Yu, L., Edward, G., Dean, K., Liu, H., Scully, A.D. (2009) Effect of matrix-particle interfacial adhesion on the mechanical properties of poly(lactic acid)/wood-flour micro-composites. J. Polym. Environ. 17:83–94.10.1007/s10924-009-0124-0Search in Google Scholar

Pilla, S., Gong, S., O’Neill, E., Yang, L., Rowell, R.M. (2009) Polylactide-recycled wood fiber composites. J. Appl. Polym. Sci. 11:37–47.10.1002/app.28860Search in Google Scholar

Porter, D., Vollrath, F. (2009) Silk as a biomimetic ideal for structural polymers. Adv. Mater. 21:487–492.10.1002/adma.200801332Search in Google Scholar

Quitadamo, A., Massardier, V., Valente, M. (2017) Oil-based and bio-derived thermoplastic polymer blends and composites. In: Introduction to Renewable Biomaterials: First Principles and Concepts. Eds. Lucia, L., Ayoub, A. Wiley Hoboken, New Jersey, USA. pp. 239–268.10.1002/9781118698600.ch8Search in Google Scholar

Sadik, T., Massardier, V., Becquart, F., Taha, M. (2013) Polyolefins/poly(3-hydroxybutyrate-co-hydroxyvalerate)blends compatibilization: morphology, rheological and mechanical properties. Appl. Polym. 127:1148–1156.10.1002/app.37957Search in Google Scholar

Saheb, D.N., Jog, J.P. (1999) Natural fiber polymer composites: a review. Adv. Polym. Technol. 18:351–363.10.1002/(SICI)1098-2329(199924)18:4<351::AID-ADV6>3.0.CO;2-XSearch in Google Scholar

Saiah, R., Gattin, R., Srekumar, P.A. (2012) Properties and biodegradation nature of thermoplastic starch. In: Thermoplastic Elastomers. Ed. El-Sonbati, A. InTech, Rijeka, Croatia. pp. 57–78.10.5772/35348Search in Google Scholar

Sankri, A., Arhaliass, A., Dez, I., Gaumont, A.C., Grohe, Y., Lourdin, D., Pillin, I., Rolland-Sabaté, A., Leroy, E. (2010) Thermoplastic starch plasticized by an ionic liquid. Carbohydr. Polym. 82:256–263.10.1016/j.carbpol.2010.04.032Search in Google Scholar

Shamsuri, A.A., Daik, R. (2014) Utilization of an ionic liquid/urea mixture as a physical coupling agent for agarose/talc composite films. Materials 6:682–698.10.3390/ma6020682Search in Google Scholar

Tang, C.H., Jiang, Y., Wen, Q.B., Yang, X.Q. (2005) Effect of transglutaminase treatment on the properties of cast films of soy protein isolates. J. Biotechnol. 120:296–307.10.1016/j.jbiotec.2005.06.020Search in Google Scholar PubMed

Valente, M., Quitadamo, A. (2017) Polymeric matrix composites at reduced environmental impact. Polym. Eng. Sci. 57:651–656.10.1002/pen.24606Search in Google Scholar

Valente, M., Tirillò, J., Quitadamo, A. (2015) Industrial paper recycling process : suitable micronization for additive polymer application. City Saf. Energy J. 2:145–152.Search in Google Scholar

Valente, M., Tirillò, J., Quitadamo, A., Santulli, C. (2017) Paper fiber filled polymer. Mechanical evaluation and interfaces modification. Compos. Part B Eng. 110:520–529.10.1016/j.compositesb.2016.11.013Search in Google Scholar

Wambua, P., Ivens, J., Verpoest, I. (2003) Natural fibres: can they replace glass in fibre reinforced plastics? Compos. Sci. Technol. 63:1259–1264.10.1016/S0266-3538(03)00096-4Search in Google Scholar

Windt, M., Meier, D., Lehnen, R. (2011) Quantification of polypropylene (PP) in wood plastic composites (WPCs) by analytica pyrolysis (Py) and differential scanning calorimetry (DSC). Holzforschung 65:99–207.10.1515/hf.2011.024Search in Google Scholar

Wu, T.-L., Chien, Y.-C., Chen, T.-Y., Wu, J.-H. (2013) The influence of hot-press temperature and cooling rate on thermal and physicomechanical properties of bamboo particle-polylactic acid composites. Holzforschung 67:325–331.10.1515/hf-2012-0087Search in Google Scholar

Žepič, V., Poljanšek, I., Oven, P., Čop, M. (2016) COST-FP1105: properties of PLA films reinforced with unmodified and acetylated freeze dried nanofibrillated cellulose. Holzforschung 70:1125–1134.10.1515/hf-2016-0096Search in Google Scholar

Received: 2017-09-20
Accepted: 2018-03-06
Published Online: 2018-04-09
Published in Print: 2018-07-26

©2018 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 20.4.2024 from https://www.degruyter.com/document/doi/10.1515/hf-2017-0149/html
Scroll to top button