Skip to main content
Log in

Continuous Dependence of Fuzzy Mild Solutions on Parameters for IVP of Fractional Fuzzy Evolution Equations

  • Research Paper
  • Published:
Fractional Calculus and Applied Analysis Aims and scope Submit manuscript

Abstract

In this article, we are concerned with the VIP of fractional fuzzy evolution equations in the space of triangular fuzzy numbers. The continuous dependence of two kinds of fuzzy mild solutions on initial values and orders for the studied problem is obtained. The results obtained in this paper improve and extend some related conclusions on this topic.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Reference

  1. R.P. Agarwal, V. Lakshmikantham, J.J. Nieto, On the concept of solution for fractional differential eqautions with uncertainty. Nonlinear Anal. 72, 6, (2010), 2859–2862.

    Article  MathSciNet  Google Scholar 

  2. M.Z. Ahmad, M.K. Hasan, B. De Baets, Analytical and numerical solutions of fuzzy differential equations. Inf. Sci. 236, (2013), 156–167.

    Article  MathSciNet  Google Scholar 

  3. T. Allahviranloo, Z. Gouyandeh, A. Armand, Fuzzy fractional differential equations under generalized fuzzy Caputo derivative. J. Intell. Fuzzy Syst. 26, 3, (2014), 1481–1490.

    Article  MathSciNet  Google Scholar 

  4. R. Alikhani, F. Bahrami, Global solutions of fuzzy integro-differential equations under generalized differentiability by the method of upper and lower solutions. Inf. Sci. 295, (2015), 600–608.

    Article  MathSciNet  Google Scholar 

  5. S. Arshad, V. Lupulescu, On the fractional differential equations with uncertainty. Nonlinear Anal. 74, 11, (2011), 3685–3693.

    Article  MathSciNet  Google Scholar 

  6. S. Arshad, V. Lupulescu, On the fractional differential equations with uncertainty. Nonlinear Anal. 74, 11, (2011), 3685–3693.

    Article  MathSciNet  Google Scholar 

  7. D. Baleanu, Z.B. Guvenc, Machado J.A. Tenreiro. New Trends in Nanotechnology and Fractional Calculus Applications, Springer, London, (2010).

    Book  Google Scholar 

  8. B. Bede. Mathematics of Fuzzy Sets and Fuzzy Logic, Spring-Verlag, Berlin, (2013).

    Book  Google Scholar 

  9. B. Bede, S.G. Gal, Generalizations of the differential of fuzzy-number-valued functions with applications to fuzzy differential equations. Fuzzy Sets Syst. 151, (2005), 581–599.

    Article  Google Scholar 

  10. B. Bede, I.J. Rudas, A.L. Bencsik, First order linear fuzzy differential equations under generalized differentiability. Inf. Sci. 177, (2007), 1648–1662.

    Article  MathSciNet  Google Scholar 

  11. B. Bede, L. Stefanini, Generalized differentiability of fuzzy-valued functions. Fuzzy Sets Syst. 230, (2013), 119–141.

    Article  MathSciNet  Google Scholar 

  12. Y.K. Chang, A. Pereira, R. Ponce, Approximate controllability for fractional differential equations of Sobolev type via properties on resolvent operators. Fract. Calc. Appl. Anal. 20, 4, (2017), 963–987. DOI: 10.1515/fca-2017-0050; https://www.degruyter.com/journal/key/fca/20/4/html.

    Article  MathSciNet  Google Scholar 

  13. P. Chen, X. Zhang, Y. Li, Nonlocal problem for fractional stochastic evolution equations with solution operators. Fract. Calc. Appl. Anal. 19, 6, (2016), 1507–1526. DOI: 10.1515/fca-2016-0078; https://www.degruyter.com/journal/key/fca/19/6/html.

    Article  MathSciNet  Google Scholar 

  14. P. Chen, X. Zhang, Y. Li, Cauchy problem for fractional non-autonomous evolution equations. Banach J. Math. Anal. 14, 2, (2020), 559–584.

    Article  MathSciNet  Google Scholar 

  15. P. Chen, X. Zhang, Y. Li, Existence and approximate controllability of fractional evolution equations with nonlocal conditions via resolvent operators. Fract. Calc. Appl. Anal. 23, 1, (2020), 268–291. DOI: 10.1515/fca-2020-0011; https://www.degruyter.com/journal/key/fca/23/1/html.

    Article  MathSciNet  Google Scholar 

  16. P. Chen, X. Zhang, Y. Li, Fractional non-autonomous evolution equation with nonlocal conditions. J. Pseudo-Differ. Oper. Appl. 10, 4, (2019), 955–973.

    Article  MathSciNet  Google Scholar 

  17. P. Diamond, Brief note on the variation of constants formula for fuzzy differential equations. Fuzzy Sets Syst 129, (2002), 65–71.

    Article  MathSciNet  Google Scholar 

  18. P. Diamond, P.E. Kloeden. Metric Spaces of Fuzzy Sets: Theory and Applications, World Scientific, Singapore, (1994).

    Book  Google Scholar 

  19. O.S. Fard, J. Soolaki, D.F.M Torres, A necessary condition of Pontryagin type for fuzzy fractional optimal control problems. Discrete Contin. Dyn. Syst. Ser. S 11, 1, (2018), 59–76.

    MathSciNet  MATH  Google Scholar 

  20. Z. Fan, Q. Dong, G. Li, Approximate controllability for semilinear composite fractional relaxation equations. Fract. Calc. Appl. Anal. 19, 1, (2016), 267–284. DOI: 10.1515/fca-2016-0015; https://www.degruyter.com/journal/key/fca/23/1/html.

    Article  MathSciNet  Google Scholar 

  21. C.G. Gal, S.G. Gal, Semigroup of operators on spaces of fuzzy-number-valued functions with applications to fuzzy differential equations. J. Fuzzy Math. 13, 3, (2005), 647–682.

    MathSciNet  MATH  Google Scholar 

  22. Z. Gong, H. Yang, Ill-posed fuzzy initial-boundary value problems based on generalized differentiability and regularization. Fuzzy Sets Syst. 295, (2016), 99–113.

    Article  MathSciNet  Google Scholar 

  23. N.V. Hoa, H. Vu, T.M. Duc, Fuzzy fractional differential equations under Caputo-Katugampola fractional derivative approach. Fuzzy Sets Syst. 375, (2019), 70–99.

    Article  MathSciNet  Google Scholar 

  24. D. Henry. Geometric Theory of Semilinear Parabolic Equations, Springer-Verlag, New York, (1981).

    Book  Google Scholar 

  25. V. Lakshmikantham, R.N. Mohapatra. Theory of Fuzzy Differential Equations and Inclusions, Taylor and Francis Ltd., London, (2003).

    MATH  Google Scholar 

  26. K. Li, J. Peng, J. Jia, Cauchy problems for fractional differential equations with Riemann-Liouville fractional derivatives. J. Funct. Anal. 263, 12, (2012), 476–510.

    Article  MathSciNet  Google Scholar 

  27. R. Liu, J. Wang, D. O’Regan, On the solutions of first-order linear impulsive fuzzy differential equations. Fuzzy Sets Syst. 400, (2020), 1–33.

    Article  MathSciNet  Google Scholar 

  28. R. Liu, J. Wang, D. O’Regan, Ulam type stability of first-order linear impulsive fuzzy differential equations. Fuzzy Sets Syst. 400, (2020), 34–89.

    Article  MathSciNet  Google Scholar 

  29. J. Liang, H. Yang, Controllability of fractional integro-differential evolution equations with nonlocal conditions. Appl. Math. Comput. 254, 1, (2015), 20–29.

    MathSciNet  MATH  Google Scholar 

  30. M. Mazandarani, A.V. Kamyad, Modified fractional Euler method for solving fuzzy fractional intial value problem. Commun. Nonlinear Sci. Numer. Simul. 18, 1, (2013), 12–21.

    Article  MathSciNet  Google Scholar 

  31. M. Mazandarani, N. Pariz, A.V. Kamyad, Granular differentiability of fuzzy-number-valued functions. IEEE Trans. Fuzzy Syst. 26, 1, (2018), 310–323.

    Article  Google Scholar 

  32. M. Mosleh, M. Otadi, Approximate solution of fuzzy differential equations under generalized differentiability. Appl. Math. Model. 39, 10-11, (2015), 3003–3015.

    Article  MathSciNet  Google Scholar 

  33. Y. Shao, Q. Mou, Z. Gong, On retarded fuzzy functional differential equations and nonabsolute fuzzy integrals. Fuzzy Sets Syst. 375, (2019), 121–140.

    Article  MathSciNet  Google Scholar 

  34. N.T.K Son, A fundation on semigroups of operators defined on the set of triangular fuzzy numbers and its application to fuzzy fractional evolution equations. Fuzzy Sets Syst. 347, (2018), 1–28.

    Article  Google Scholar 

  35. T. Trif, Existence of solutions to initial value problems for nonlinear fractional differential equations on the semi-axis. Fract. Calc. Appl. Anal. 16, 3, (2013), 595–612. DOI: 10.2478/s13540-013-0038-3; https://www.degruyter.com/journal/key/fca/23/1/html.

    Article  MathSciNet  Google Scholar 

  36. R.N. Wang, D. Chen, T. Xiao, Abstract fractional Cauchy problems with almost sectorial operators. J. Differential Equations 252, 1, (2012), 202–235.

    Article  MathSciNet  Google Scholar 

  37. C. Wu, Z. Gong, On Henstock integrals of interval-valued and fuzzy-number-valued functions. Fuzzy Sets Syst. 115, (2000), 377–391.

    Article  Google Scholar 

  38. H. Ye, J. Gao, Y. Ding, A generalized Gronwall inequality and its application to a fractional differential equation. J. Math. Anal. Appl. 328, 2, (2007), 1075–1081.

    Article  MathSciNet  Google Scholar 

  39. Y. Zhou, F. Jiao, Existence of mild solutions for fractional neutral evolution equations. Comput. Math. Appl. 59, 3, (2010), 1063–1077.

    Article  MathSciNet  Google Scholar 

  40. B. Zhu, L. Liu, Y. Wu, Existence and uniqueness of global mild solutions for a class of nonlinear fractional reaction-diffusion equations with delay. Comput. Math. Appl. 78, 6, (2019), 1811–1818.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pengyu Chen.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, X., Chen, P. & O’Regan, D. Continuous Dependence of Fuzzy Mild Solutions on Parameters for IVP of Fractional Fuzzy Evolution Equations. Fract Calc Appl Anal 24, 1758–1776 (2021). https://doi.org/10.1515/fca-2021-0076

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1515/fca-2021-0076

Key Words and Phrases

MSC 2010

Navigation